
HDL Coder™

Reference

R2015a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

HDL Coder™ Reference
© COPYRIGHT 2013–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2013 Online only New for Version 3.2 (R2013a)
September 2013 Online only Revised for Version 3.3 (R2013b)
March 2014 Online only Revised for Version 3.4 (Release 2014a)
October 2014 Online only Revised for Version 3.5 (Release 2014b)
March 2015 Online only Revised for Version 3.6 (Release 2015a)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

iv Contents

Functions — Alphabetical List
1

Supported Blocks
2

Properties — Alphabetical List
3

Class reference for HDL code generation from
Simulink

4

Function Reference for HDL Code Generation from
MATLAB

5

Class Reference for HDL Code Generation from
MATLAB

6

Shared Class and Function Reference for HDL Code
Generation from MATLAB and Simulink

v

7

System object Reference
8

1

Functions — Alphabetical List

1 Functions — Alphabetical List

1-2

checkhdl
Check subsystem or model for HDL code generation compatibility

Syntax

checkhdl(bdroot)

checkhdl('dut')

checkhdl(gcb)

output = checkhdl('system')

Description

checkhdl generates an HDL Code Generation Check Report, saves the report to the
target folder, and displays the report in a new window. Before generating HDL code, use
checkhdl to check your subsystems or models.

The report lists compatibility errors with a link to each block or subsystem that caused a
problem. To highlight and display incompatible blocks, click each link in the report while
keeping the model open.

The report file name is system_report.html. system is the name of the subsystem or
model passed in to checkhdl.

When a model or subsystem passes checkhdl, that does not imply code generation will
complete. checkhdl does not verify all block parameters.

checkhdl(bdroot) examines the current model for HDL code generation compatibility.

checkhdl('dut') examines the specified DUT model name, model reference name, or
subsystem name with full hierarchical path.

checkhdl(gcb) examines the currently selected subsystem.

output = checkhdl('system')

does not generate a report. Instead, it returns a 1xN struct array with one entry for
each error, warning, or message. system specifies a model or the full block path for a
subsystem at any level of the model hierarchy.

 checkhdl

1-3

checkhdl reports three levels of compatibility problems:

• Errors: cause the code generation process to terminate. The report must not contain
errors to continue with HDL code generation.

• Warnings: indicate problems in the generated code, but allow HDL code generation to
continue.

• Messages: indication that some data types have special treatment. For example, the
HDL Coder™ software automatically converts single-precision floating-point data
types to double-precision because VHDL® and Verilog® do not support single-precision
data types.

Examples

Check the subsystem symmetric_fir within the model sfir_fixed for HDL code
generation compatibility and generate a compatibility report.

checkhdl('sfir_fixed/symmetric_fir')

Check the subsystem symmetric_fir_err within the model sfir_fixed_err for HDL
code generation compatibility, and return information on problems encountered in the
struct output.

output = checkhdl('sfir_fixed_err/symmetric_fir_err')

Starting HDL Check.

...

HDL Check Complete with 4 errors, warnings and messages.

The following MATLAB® commands display the top-level structure of the struct output,
and its first cell.
output =

1x4 struct array with fields:

 path

 type

 message

 level

output(1)

ans =

 path: 'sfir_fixed_err/symmetric_fir_err/Product'

 type: 'block'

 message: 'Unhandled mixed double and non-double datatypes at ports of block'

 level: 'Error'

1 Functions — Alphabetical List

1-4

See Also
makehdl

 hdladvisor

1-5

hdladvisor
Display HDL Workflow Advisor

Syntax
hdladvisor(gcb)

hdladvisor(subsystem)

hdladvisor(model,'SystemSelector')

Description
hdladvisor(gcb) starts the HDL Workflow Advisor, passing the currently selected
subsystem within the current model as the DUT to be checked.

hdladvisor(subsystem) starts the HDL Workflow Advisor, passing in the path to a
specified subsystem within the model.

hdladvisor(model,'SystemSelector') opens a System Selector window that lets
you select a subsystem to be opened into the HDL Workflow Advisor as the device under
test (DUT) to be checked.

Examples
Open the subsystem symmetric_fir within the model sfir_fixed into the HDL
Workflow Advisor.

hdladvisor('sfir_fixed/symmetric_fir')

Open a System Selector window to select a subsystem within the current model. Then
open the selected subsystem into the HDL Workflow Advisor.

hdladvisor(gcs,'SystemSelector')

Alternatives
You can also open the HDL Workflow Advisor from the your model window by selecting
Code > HDL Code > HDL Workflow Advisor.

1 Functions — Alphabetical List

1-6

See Also
“What Is the HDL Workflow Advisor?” | “Using the HDL Workflow Advisor Window”

 hdlcoder.optimizeDesign

1-7

hdlcoder.optimizeDesign
Automatic iterative HDL design optimization

Syntax

hdlcoder.optimizeDesign(model, optimizationCfg)

hdlcoder.optimizeDesign(model, cpGuidanceFile)

Description

hdlcoder.optimizeDesign(model, optimizationCfg) automatically optimizes
your generated HDL code based on the optimization configuration you specify.

hdlcoder.optimizeDesign(model, cpGuidanceFile) regenerates the optimized
HDL code without rerunning the iterative optimization, by using data from a previous
run of hdlcoder.optimizeDesign.

Examples

Maximize clock frequency

Maximize the clock frequency for a model, sfir_fixed, by performing up to 10
optimization iterations.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

1 Functions — Alphabetical List

1-8

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Save your model.

You must save your model if you want to regenerate code later without rerunning
the iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Set the iteration limit to 10.

oc.IterationLimit = 10;

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66 Iteration 1

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72 Iteration 2

Generate and synthesize HDL code ...

(CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22 Iteration 3

Generate and synthesize HDL code ...

(CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37 Iteration 4

Generate and synthesize HDL code ...

(CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04 Iteration 5

Generate and synthesize HDL code ...

Exiting because critical path cannot be further improved.

Summary report: summary.html

Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s

 hdlcoder.optimizeDesign

1-9

Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66

Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72

Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22

Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37

Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-04-41

Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after five iterations because the fourth and fifth iterations had
the same critical path, which indicates that the coder has found the minimum critical
path. The design’s maximum clock frequency after optimization is 1 / 9.55 ns, or 104.71
MHz.

Optimize for specific clock frequency

Optimize a model, sfir_fixed, to a specific clock frequency, 50 MHz, by performing up
to 10 optimization iterations, and do not generate an HDL test bench.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

Disable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','off');

Save your model.

You must save your model if you want to regenerate code later without rerunning
the iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

1 Functions — Alphabetical List

1-10

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to stop after it reaches a clock frequency
of 50MHz, or 10 iterations, whichever comes first.

oc.ExplorationMode = ...

 hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency;

oc.TargetFrequency = 50;

oc.IterationLimit = 10; =

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'GenerateHDLTestBench', 'off');

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02 Iteration 1

Generate and synthesize HDL code ...

Exiting because constraint (20.00 ns) has been met (16.26 ns).

Summary report: summary.html

Achieved Critical Path (CP) Latency : 16.26 ns Elapsed : 134.02 s

Iteration 0: (CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-14

Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after one iteration because it has achieved the target clock
frequency. The critical path is 16.26 ns, a clock frequency of 61.50 GHz.

Resume clock frequency optimization using saved data

Run additional optimization iterations for a model, sfir_fixed, using saved iteration
data, because you terminated in the middle of a previous run.

Open the model and specify the DUT subsystem.

 hdlcoder.optimizeDesign

1-11

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the interrupted
run.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to run using data from the first iteration
of a previous run.

oc.ResumptionPoint = 'Iter5-07-Jan-2014-17-04-29';

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Try to resume from resumption point: Iter5-07-Jan-2014-17-04-29

Iteration 5

Generate and synthesize HDL code ...

Exiting because critical path cannot be further improved.

Summary report: summary.html

Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s

Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66

Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72

1 Functions — Alphabetical List

1-12

Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22

Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37

Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-30

Validation model: gm_sfir_fixed_vnl

Then coder stops after one additional iteration because it has achieved the target clock
frequency. The critical path is 9.55 ns, or a clock frequency of 104.71 MHz.

Regenerate code using original design and saved optimization data

Regenerate HDL code using the original model, sfir_fixed, and saved data from the
final iteration of a previous optimization run.

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the original
run.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

Regenerate HDL code using saved optimization data from cpGuidance.mat.

hdlcoder.optimizeDesign(model,

 'hdlsrc/sfir_fixed/hdlexpl/Final-19-Dec-2013-23-05-04/cpGuidance.mat')

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-16-52

Validation model: gm_sfir_fixed_vnl

Input Arguments

model — Model name
string

 hdlcoder.optimizeDesign

1-13

Model name, specified as a string.
Example: 'sfir_fixed'

optimizationCfg — Optimization configuration
hdlcoder.OptimizationConfig

Optimization configuration, specified as an hdlcoder.OptimizationConfig object.

cpGuidanceFile — File containing saved optimization data
'' (default) | string

File that contains saved data from the final optimization iteration, including relative
path, specified as a string. Use this file to regenerate optimized code without rerunning
the iterative optimization.

The file name is cpGuidance.mat. You can find the file in the iteration folder name that
starts with Final, which is a subfolder of hdlexpl.

Example: 'hdlexpl/Final-11-Dec-2013-23-17-10/cpGuidance.mat'

More About
• “Automatic Iterative Optimization”

See Also

Classes
hdlcoder.OptimizationConfig

Functions
hdlcoder.supportedDevices

Properties
SynthesisTool | SynthesisToolChipFamily | SynthesisToolDeviceName |
SynthesisToolPackageName | SynthesisToolSpeedValue

1 Functions — Alphabetical List

1-14

hdlcoder.supportedDevices
Show supported target hardware and device details

Syntax

hdlcoder.supportedDevices

Description

hdlcoder.supportedDevices shows a link to a report that contains device and device
property names for target devices supported by your synthesis tool.

You can use the supported target device information to set SynthesisToolChipFamily,
SynthesisToolDeviceName, SynthesisToolPackageName, and
SynthesisToolSpeedValue for your model.

To see the report link, you must have a synthesis tool set up. If you have more than one
synthesis tool available, you see a different report link for each synthesis tool.

Examples

Set the target device for your model

In this example, you set the target device for a model, sfir_fixed. Two synthesis tools
are available, Altera® Quartus II and Xilinx® ISE. The target device is a Xilinx Virtex-6
XC6VLX130T FPGA.

Show the supported target device reports.

hdlcoder.supportedDevices

Altera QUARTUS II Device List

Xilinx ISE Device List

Click the Xilinx ISE Device List link to open the supported target device report
and view details for your target device.

 hdlcoder.supportedDevices

1-15

Open the model, sfir_fixed.

sfir_fixed

Set the SynthesisToolChipFamily, SynthesisToolDeviceName,
SynthesisToolPackageName, and SynthesisToolSpeedValue model parameters
based on details from the supported target device report.

hdlset_param ('sfir_fixed',

 'SynthesisToolChipFamily', 'Virtex6',

 'SynthesisToolDeviceName','xc6vlx130t',

 'SynthesisToolPackageName', 'ff484',

 'SynthesisToolSpeedValue', '-1')

View the nondefault parameters for your model, including target device information.

hdldispmdlparams

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SynthesisTool : 'Xilinx ISE'

SynthesisToolChipFamily : 'Virtex6'

SynthesisToolDeviceName : 'xc6vlx130t'

SynthesisToolPackageName : 'ff484'

SynthesisToolSpeedValue : -1

More About
• “Synthesis Tool Path Setup”

See Also
SynthesisToolChipFamily | SynthesisToolDeviceName |
SynthesisToolPackageName | SynthesisToolSpeedValue

1 Functions — Alphabetical List

1-16

hdldispblkparams
Display HDL block parameters with nondefault values

Syntax

hdldispblkparams(path)

hdldispblkparams(path,'all')

Description

hdldispblkparams(path) displays, for the specified block, the names and values of
HDL parameters that have nondefault values.

hdldispblkparams(path,'all') displays, for the specified block, the names and
values of all HDL block parameters.

Input Arguments

path

Path to a block or subsystem in the current model.

Default: None

'all'

If you pass in the string 'all', hdldispblkparams displays the names and values of
all HDL properties of the specified block.

Examples

The following example displays nondefault HDL block parameter settings for a Sum of
Elements block).
hdldispblkparams('simplevectorsum/vsum/Sum of Elements')

 hdldispblkparams

1-17

%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of Elements')

%%

Implementation

 Architecture : Linear

Implementation Parameters

 InputPipeline : 1

The following example displays HDL block parameters and values for the currently
selected block, (a Sum of Elements block).
hdldispblkparams(gcb,'all')

%%

HDL Block Parameters ('simplevectorsum/vsum/Sum of

Elements')

%%

Implementation

 Architecture : Linear

Implementation Parameters

 InputPipeline : 0

 OutputPipeline : 0

See Also
“Set and View HDL Block Parameters”

1 Functions — Alphabetical List

1-18

hdldispmdlparams
Display HDL model parameters with nondefault values

Syntax

hdldispmdlparams(model)

hdldispmdlparams(model,'all')

Description

hdldispmdlparams(model) displays, for the specified model, the names and values of
HDL parameters that have nondefault values.

hdldispmdlparams(model,'all') displays the names and values of all HDL
parameters for the specified model.

Input Arguments

model

Name of an open model.

Default: None

'all'

If you pass in the string'all' , hdldispmdlparams displays the names and values of
all HDL properties of the specified model.

Examples

The following example displays HDL properties of the current model that have
nondefault values.
 hdldispmdlparams(bdroot)

 hdldispmdlparams

1-19

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters (non-default)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CodeGenerationOutput : 'GenerateHDLCodeAndDisplayGeneratedModel'

HDLSubsystem : 'simplevectorsum_2atomics/Subsystem'

OptimizationReport : 'on'

ResetInputPort : 'rst'

ResetType : 'Synchronous'

The following example displays HDL properties and values of the current model.
 hdldispmdlparams(bdroot,'all')

%%%%%%%%%%%%%%%%%%%%%%%%%

HDL CodeGen Parameters

%%%%%%%%%%%%%%%%%%%%%%%%%

AddPipelineRegisters : 'off'

Backannotation : 'on'

BlockGenerateLabel : '_gen'

CheckHDL : 'off'

ClockEnableInputPort : 'clk_enable'

.

.

.

VerilogFileExtension : '.v'

See Also
“View HDL Model Parameters”

1 Functions — Alphabetical List

1-20

hdlget_param

Return value of specified HDL block-level parameter for specified block

Syntax

p = hdlget_param(block_path,prop)

Description

p = hdlget_param(block_path,prop) gets the value of a specified HDL property of
a block or subsystem, and returns the value to the output variable.

Input Arguments

block_path

Path to a block or subsystem in the current model.

Default: None

prop

A string designating one of the following:

• The name of an HDL block property of the block or subsystem specified by
block_path.

• 'all' : If prop is set to 'all', hdlget_param returns Name,Value pairs for HDL
properties of the specified block.

Default: None

 hdlget_param

1-21

Output Arguments

p

p receives the value of the HDL block property specified by prop. The data type and
dimensions of p depend on the data type and dimensions of the value returned. If prop is
set to 'all', p is a cell array.

Examples

In the following example hdlget_param returns the value of the HDL block parameter
OutputPipeline to the variable p.

 p = hdlget_param(gcb,'OutputPipeline')

p =

 3

In the following example hdlget_param returns HDL block parameters and values for
the current block to the cell array p.
p = hdlget_param(gcb,'all')

p =

 'Architecture' 'Linear' 'InputPipeline' [0] 'OutputPipeline' [0]

More About

Tips

• Use hdlget_param only to obtain the value of HDL block parameters (see
“HDL Block Properties” for a list of block implementation parameters). Use
hdldispmdlparams to see the values of HDL model parameters. To obtain the value
of general model parameters, use the get_param function.

See Also
hdlset_param | hdlsaveparams | hdlrestoreparams

1 Functions — Alphabetical List

1-22

hdllib
Create library of blocks that support HDL code generation

Syntax
hdllib

hdllib('html')

Description
hdllib creates a library of blocks that are compatible with HDL code generation.
Use blocks from this library to build models that are compatible with the HDL Coder
software.

The default library name is hdlsupported. After you generate the library, you can save
it to a folder of your choice.

Regenerate the library each time you install a new release to keep it current.

hdllib('html') creates a library of blocks that are compatible with HDL code
generation, and generates two additional HTML reports: a categorized list of blocks
(hdlblklist.html), and a table of blocks and their HDL code generation parameters
(hdlsupported.html).

Examples

Create a supported blocks library

To create a library that contains blocks supported for HDL code generation:

hdllib

The hdlsupported block library opens.

Create a supported blocks library and HTML reports

To create a library and HTML reports showing blocks supported for HDL code
generation:

 hdllib

1-23

hdllib('html')

HDL supported block list hdlblklist.html

HDL implementation list hdlsupported.html

The hdlsupported library opens. To view the reports, click the hdlblklist.html and
hdlsupported.html links.

See Also
“HDL Block Properties”

1 Functions — Alphabetical List

1-24

hdlrestoreparams
Restore block- and model-level HDL parameters to model

Syntax

hdlrestoreparams(dut)

hdlrestoreparams(dut,filename)

Description

hdlrestoreparams(dut) restores to the specified model the default block- and model-
level HDL settings.

hdlrestoreparams(dut,filename) restores to the specified model the block- and
model-level HDL settings from a previously saved file.

Examples

Reset and Restore HDL-Related Model Parameters

Open the model.

sfir_fixed

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5)

Verify that model parameters are set.

 hdlrestoreparams

1-25

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5);

Save the model parameters to a MATLAB script, sfir_saved_params.m.

hdlsaveparams('sfir_fixed/symmetric_fir',

 'sfir_saved_params.m')

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed');

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir',

 'sfir_saved_params.m')

Verify that the saved model parameters are restored.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5);

Input Arguments

dut — DUT subsystem name
string

1 Functions — Alphabetical List

1-26

DUT subsystem name, specified as a string, with full hierarchical path.
Example: 'modelname/subsysTarget'

Example: 'modelname/subsysA/subsysB/subsysTarget'

filename — Name of file
string

Name of file containing previously saved HDL model parameters.
Example: 'mymodel_saved_params.m'

See Also
hdlsaveparams

 hdlsaveparams

1-27

hdlsaveparams

Save nondefault block- and model-level HDL parameters

Syntax

hdlsaveparams(dut)

hdlsaveparams(dut,filename)

Description

hdlsaveparams(dut) displays nondefault block- and model-level HDL parameters.

hdlsaveparams(dut,filename) saves nondefault block- and model-level HDL
parameters to a MATLAB script.

Examples

Display HDL-Related Nondefault Model Parameters

Open the model.

sfir_fixed

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)

hdlset_param('sfir_fixed/symmetric_fir/Product', 'InputPipeline', 5)

Display HDL-related nondefault model parameters for the symmetric_fir subsystem.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

hdlset_param('sfir_fixed/symmetric_fir/Product', 'InputPipeline', 5);

1 Functions — Alphabetical List

1-28

The output identifies the subsystem and displays its HDL-related parameter values.

Save and Restore HDL-Related Model Parameters

Open the model.

sfir_fixed

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed');

Set HDL-related model parameters for the symmetric_fir subsystem.

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3)

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5)

Verify that model parameters are set.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5);

Save the model parameters to a MATLAB script, sfir_saved_params.m.

hdlsaveparams('sfir_fixed/symmetric_fir',

 'sfir_saved_params.m')

Reset HDL-related model parameters to default values.

hdlrestoreparams('sfir_fixed/symmetric_fir')

Verify that model parameters have default values.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed');

 hdlsaveparams

1-29

Restore the saved model parameters from sfir_saved_params.m.

hdlrestoreparams('sfir_fixed/symmetric_fir',

 'sfir_saved_params.m')

Verify that the saved model parameters are restored.

hdlsaveparams('sfir_fixed/symmetric_fir')

hdlset_param('sfir_fixed', 'HDLSubsystem',

 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed/symmetric_fir', 'SharingFactor', 3);

hdlset_param('sfir_fixed/symmetric_fir/Product',

 'InputPipeline', 5);

Input Arguments

dut — DUT subsystem name
string

DUT subsystem name, specified as a string, with full hierarchical path.
Example: 'modelname/subsysTarget'

Example: 'modelname/subsysA/subsysB/subsysTarget'

filename — Name of file
string

Name of file to which you are saving model parameters, specified as a string.
Example: 'mymodel_saved_params.m'

See Also
hdlrestoreparams

1 Functions — Alphabetical List

1-30

hdlset_param
Set HDL-related parameters at model or block level

Syntax

hdlset_param(path,Name,Value)

Description

hdlset_param(path,Name,Value) sets HDL-related parameters in the block or
model referenced by path. The parameters to be set, and their values, are specified by
one or more Name,Value pair arguments. You can specify several name and value pair
arguments in any order as Name1,Value1,…,NameN,ValueN.

Input Arguments

path

Path to the model or block for which hdlset_param is to set one or more parameter
values.

Default: None

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments, where Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Name'

Name is a string specifying the name of one of the following:

• A model-level HDL-related property. See Properties — Alphabetical List for a list of
model-level properties, their data types and their default values.

 hdlset_param

1-31

• An HDL block property, such as an implementation name or an implementation
parameter. See “HDL Block Properties” for a list of block implementation parameters.

Default: None

'Value'

Value is a value to be applied to the corresponding property in a Name,Value argument.

Default: Default value is dependent on the property.

Examples

The following example uses the sfir_fixed model to demonstrate how to locate a
group of blocks in a subsystem and specify the same output pipeline depth for each of the
blocks.
open sfir_fixed;

prodblocks = find_system('sfir_fixed/symmetric_fir', 'BlockType', 'Product');

for ii=1:length(prodblocks), hdlset_param(prodblocks{ii}, 'OutputPipeline', 2), end;

More About

Tips

• When you set multiple parameters on the same model or block, use a single
hdlset_param command with multiple pairs of arguments, rather than multiple
hdlset_param commands. This technique is more efficient because using a single
call requires evaluating parameters only once.

• To set HDL block parameters for multiple blocks, use the find_system function
to locate the blocks of interest. Then, use a loop to iterate over the blocks and call
hdlset_param to set the desired parameters.

• “Set and View HDL Block Parameters”
• “Set HDL Block Parameters for Multiple Blocks”

See Also
hdlget_param | hdlsaveparams | hdlrestoreparams

1 Functions — Alphabetical List

1-32

hdlsetup
Set up model parameters for HDL code generation

Syntax

hdlsetup('modelname')

Description

hdlsetup('modelname') sets the parameters of the model specified by modelname
to common default values for HDL code generation. After using hdlsetup, you can use
set_param to modify these default settings.

Open the model before you invoke the hdlsetup command.

To see which model parameters are affected by hdlsetup, open hdlsetup.m.

How hdlsetup Configures Solver Options

hdlsetup configures Solver options used by HDL Coder. These options are:

• Type: Fixed-step. This is the recommended solver type for most HDL applications.

HDL Coder also supports variable-step solvers under the following conditions:

• The device under test (DUT) is single-rate.
• The sample times of all signals driving the DUT are greater than 0.

• Solver: Discrete (no continuous states). You can use other fixed-step
solvers, but this option is usually best for simulating discrete systems.

• Tasking mode: SingleTasking. HDL Coder does not support multitasking mode.

Do not set Tasking mode to Auto.

 hdlsetuptoolpath

1-33

hdlsetuptoolpath

Set up system environment to access FPGA synthesis software

Syntax

hdlsetuptoolpath('ToolName',TOOLNAME,'ToolPath',TOOLPATH)

Description

hdlsetuptoolpath('ToolName',TOOLNAME,'ToolPath',TOOLPATH) adds a third-
party FPGA synthesis tool to your system path. It sets up the system environment
variables for the synthesis tool. To configure one or more supported third-party FPGA
synthesis tools to use with HDL Coder, use the hdlsetuptoolpath function.

Before opening the HDL Workflow Advisor, add the tool to your system path. If you
already have the HDL Workflow Advisor open, see “Add Synthesis Tool for Current HDL
Workflow Advisor Session”.

Examples

Set Up Altera Quartus II

The following command sets the synthesis tool path to point to an installed Altera
Quartus II 14.0 executable file. You must have already installed Altera Quartus II.

hdlsetuptoolpath('ToolName','Altera Quartus II','ToolPath',...

 'C:\altera\14.0\quartus\bin\quartus.exe');

Note: In this example, the path to the Quartus II executable file is C:\altera
\14.0\quartus\bin\quartus.exe. If the path to your executable file is different, use your
path.

1 Functions — Alphabetical List

1-34

Set Up Xilinx ISE

The following command sets the synthesis tool path to point to an installed Xilinx ISE
14.7 executable file. You must have already installed Xilinx ISE.

hdlsetuptoolpath('ToolName','Xilinx ISE','ToolPath',...

 'C:\Xilinx\14.7\ISE_DS\ISE\bin\nt64\ise.exe');

Note: In this example, the path to the ISE executable file is C:\Xilinx\14.7\ISE_DS\ISE
\bin\nt64\ise.exe. If the path to your executable file is different, use your path.

Set Up Xilinx Vivado

The following command sets the synthesis tool path to point to an installed Vivado®

Design Suite 2014.2 batch file. You must have already installed Xilinx Vivado.

hdlsetuptoolpath('ToolName','Xilinx Vivado','ToolPath',...

 'C:\Xilinx\Vivado\2014.2\bin\vivado.bat');

Note: In this example, the path to the Vivado batch file is C:\Xilinx\Vivado\2014.2\bin
\vivado.bat. If the path to your batch file is different, use your path.

Input Arguments

TOOLNAME — Synthesis tool name
string

Synthesis tool name, specified as a string.
Example: 'Xilinx Vivado'

TOOLPATH — Full path to the synthesis tool executable or batch file
string

Full path to the synthesis tool executable or batch file, specified as a string.
Example: 'C:\Xilinx\Vivado\2014.2\bin\vivado.bat'

 hdlsetuptoolpath

1-35

Tips

• If you have an icon for the tool on your Windows® desktop, you can find the full path
to the synthesis tool.

1 Right-click the icon and select Properties.
2 Click the Shortcut tab.

• The hdlsetuptoolpath function changes the system path and system environment
variables for only the current MATLAB session. To execute hdlsetuptoolpath
programmatically when MATLAB starts, add hdlsetuptoolpath to your
startup.m script.

More About
• “Supported Third-Party Tools and Hardware”
• “Tool Setup”
• “Add Synthesis Tool for Current HDL Workflow Advisor Session”

See Also
setenv | startup

Introduced in R2011a

1 Functions — Alphabetical List

1-36

makehdl
Generate HDL RTL code from model, subsystem, or model reference

Syntax

makehdl(dut)

makehdl(dut,Name,Value)

Description

makehdl(dut) generates HDL code from the specified DUT model, subsystem, or model
reference.

makehdl(dut,Name,Value) generates HDL code from the specified DUT model,
subsystem, or model reference with options specified by one or more name-value pair
arguments.

Examples

Generate VHDL for the Current Model

Generate VHDL code for the current model.

Generate HDL code for the current model with code generation options set to default
values.

makehdl(bdroot)

The generated VHDL code is saved in the hdlsrc folder.

Generate Verilog for a Subsystem Within a Model

Generate Verilog for the subsystem symmetric_fir within the model sfir_fixed.

Open the sfir_fixed model.

 makehdl

1-37

sfir_fixed;

The model opens in a new Simulink window.

Generate Verilog for the symmetric_fir subsystem.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Generating HDL for 'sfir_fixed/symmetric_fir'.

Starting HDL check.

HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,

 and 0 messages.

Begin Verilog Code Generation for 'sfir_fixed'.

Working on sfir_fixed/symmetric_fir as

 hdlsrc\sfir_fixed\symmetric_fir.v

HDL code generation complete.

The generated Verilog code for the symmetric_fir subsystem is saved in hdlsrc
\sfir_fixed\symmetric_fir.v.

Close the model.

bdclose('sfir_fixed');

Check Subsystem for Compatibility with HDL Code Generation

Check that the subsystem symmetric_fir is compatible with HDL code generation,
then generate HDL.

Open the sfir_fixed model.

sfir_fixed;

The model opens in a new Simulink window.

Check the symmetric_fir subsystem for compatibility with HDL code generation.
Generate code with code generation options set to default values.

makehdl('sfir_fixed/symmetric_fir','CheckHDL','on')

The generated VHDL code for the symmetric_fir subsystem is saved in hdlsrc
\sfir_fixed\symmetric_fir.vhd.

Close the model.

1 Functions — Alphabetical List

1-38

bdclose('sfir_fixed');

Input Arguments

dut — DUT model or subsystem name
string

DUT model or subsystem name, specified as subsystem name, top-level model name, or
model reference name with full hierarchical path.
Example: 'top_level_name'

Example: 'top_level_name/subsysA/subsysB/codegen_subsys_name'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘TargetLanguage’,’Verilog’

Basic Options

'TargetLanguage' — Target language
'VHDL' (default) | 'Verilog'

For more information, see TargetLanguage.

'TargetDirectory' — Output directory
'hdlsrc' (default) | string

For more information, see TargetDirectory.

'CheckHDL' — Check HDL code generation compatibility
'off' (default) | 'on'

For more information, see CheckHDL_property.

 makehdl

1-39

'GenerateHDLCode' — Generate HDL code
'on' (default) | 'off'

For more information, see GenerateHDLCode.

'SplitEntityArch' — Split VHDL entity and architecture into separate files
'off' (default) | 'on'

For more information, see SplitEntityArch.

'UseSingleLibrary' — Generate VHDL code for model references into a single library
'off' (default) | 'on'

For more information, see UseSingleLibrary.

'Verbosity' — Level of message detail
1 (default) | 0

For more information, see Verbosity.

Report Generation

'HDLCodingStandard' — Specify HDL coding standard
string

For more information, see HDLCodingStandard.

'HDLCodingStandardCustomizations' — Specify HDL coding standard customization
object
hdlcoder.CodingStandard object

For more information, see HDLCodingStandardCustomizations.

'Traceability' — Generate report with mapping links between HDL and model
'off' (default) | 'on'

For more information, see Traceability.

'ResourceReport' — Resource utilization report generation
'off' (default) | 'on'

For more information, see ResourceReport.

1 Functions — Alphabetical List

1-40

'OptimizationReport' — Optimization report generation
'off' (default) | 'on'

For more information, see OptimizationReport.

'GenerateWebview' — Include model Web view
'on' (default) | 'off'

For more information, see GenerateWebview.

Speed and Area Optimization

'BalanceDelays' — Delay balancing
'on' (default) | 'off'

For more information, see BalanceDelays.

'DistributedPipeliningPriority' — Specify priority for distributed pipelining
algorithm
'NumericalIntegrity' (default) | 'Performance'

For more information, see DistributedPipeliningPriority.

'HierarchicalDistPipelining' — Hierarchical distributed pipelining
'off' (default) | 'on'

For more information, see HierarchicalDistPipelining.

'PreserveDesignDelays' — Prevent distributed pipelining from moving design delays
'off' (default) | 'on'

For more information, see PreserveDesignDelays.

'ClockRatePipelining' — Insert pipeline registers at the clock rate instead of the data
rate for multi-cycle paths
'on' (default) | 'off'

For more information, see ClockRatePipelining.

'MaxOversampling' — Limit the maximum sample rate
0 (default) | N, where N is an integer greater than 1

 makehdl

1-41

For more information, see MaxOversampling.

'MaxComputationLatency' — Specify the maximum number of time steps for which your
DUT inputs are guaranteed to be stable
1 (default) | N, where N is an integer greater than 1

For more information, see MaxComputationLatency.

'MinimizeClockEnables' — Omit clock enable logic for single-rate designs
'off' (default) | 'on'

For more information, see MinimizeClockEnables.

'RAMMappingThreshold' — Minimum RAM size for mapping to RAMs instead of registers
256 (default) | positive integer

The minimum RAM size required for mapping to RAMs instead of registers, specified in
bits.

For more information, see RAMMappingThreshold.

'HighlightFeedbackLoops' — Highlight feedback loops inhibiting delay balancing and
optimizations
'off' (default) | 'on'

For more information, see HighlightFeedbackLoops.

'HighlightFeedbackLoopsFile' — Feedback loop highlighting script file name
'highlightFeedbackLoop' (default) | string

For more information, see HighlightFeedbackLoopsFile.

Coding Style

'UserComment' — HDL file header comment
string

For more information, see UserComment.

'UseAggregatesForConst' — Represent constant values with aggregates
'off' (default) | 'on'

1 Functions — Alphabetical List

1-42

For more information, see UseAggregatesForConst.

'UseRisingEdge' — Use VHDL rising_edge or falling_edge function to detect clock
transitions
'off' (default) | 'on'

For more information, see UseRisingEdge.

'LoopUnrolling' — Unroll VHDL FOR and GENERATE loops
'off' (default) | 'on'

For more information, see LoopUnrolling.

'UseVerilogTimescale' — Generate 'timescale compiler directives
'on' (default) | 'off'

For more information, see UseVerilogTimescale.

'InlineConfigurations' — Include VHDL configurations
'on' (default) | 'off'

For more information, see InlineConfigurations.

'SafeZeroConcat' — Type-safe syntax for concatenated zeros
'on' (default) | 'off'

For more information, see SafeZeroConcat.

'DateComment' — Include time stamp in header
'on' (default) | 'off'

For more information, see DateComment.

'ScalarizePorts' — Flatten vector ports into scalar ports
'off' (default) | 'on'

For more information, see ScalarizePorts.

'MinimizeIntermediateSignals' — Minimize intermediate signals
'off' (default) | 'on'

For more information, see MinimizeIntermediateSignals.

 makehdl

1-43

'RequirementComments' — Link from code generation reports to requirement documents
'on' (default) | 'off'

For more information, see RequirementComments.

'InlineMATLABBlockCode' — Inline HDL code for MATLAB Function blocks
'off' (default) | 'on'

For more information, see InlineMATLABBlockCode.

'MaskParameterAsGeneric' — Reusable code generation for subsystems with identical
mask parameters
'off' (default) | 'on'

For more information, see MaskParameterAsGeneric.

'InitializeBlockRAM' — Initial signal value generation for RAM blocks
'on' (default) | 'off'

For more information, see InitializeBlockRAM.

'RAMArchitecture' — RAM architecture
'WithClockEnable' (default) | 'WithoutClockEnable'

For more information, see RAMArchitecture.

'HandleAtomicSubsystem' — Reusable code generation for identical atomic subsystems
'on' (default) | 'off'

For more information, see HandleAtomicSubsystem.

Clocks and Reset

'ClockEdge' — Active clock edge
'Rising' (default) | 'Falling'

For more information, see ClockEdge.

'ClockInputs' — Single or multiple clock inputs
'Single' (default) | 'Multiple'

Single or multiple clock inputs, specified as a string.

1 Functions — Alphabetical List

1-44

For more information, see ClockInputs.

'Oversampling' — Oversampling factor for global clock
1 (default) | integer greater than or equal to 0

Frequency of global oversampling clock, specified as an integer multiple of the model’s
base rate.

For more information, see Oversampling.

'ResetAssertedLevel' — Asserted (active) level of reset
'active-high' (default) | 'active-low'

For more information, see ResetAssertedLevel.

'ResetType' — Reset type
'async' (default) | 'sync'

For more information, see ResetType.

'TriggerAsClock' — Use trigger signal as clock in triggered subsystems
'off' (default) | 'on'

For more information, see TriggerAsClock.

'TimingControllerArch' — Generate reset for timing controller
'default' (default) | 'resettable'

For more information, see TimingControllerArch.

Test Bench

'Verbosity' — Level of message detail
0 (default) | n

For more information, see Verbosity.

'GenerateCoSimBlock' — Generate HDL Cosimulation block
'off' (default) | 'on'

Generate an HDL Cosimulation block so you can simulate the DUT in Simulink® with an
HDL simulator.

 makehdl

1-45

For more information, see GenerateCoSimBlock.

'GenerateCoSimModel' — Generate HDL Cosimulation model
'ModelSim' (default) | 'Incisive'

Generate a model containing an HDL Cosimulation block for the specified HDL
simulator.

For more information, see GenerateCoSimModel.

'GenerateValidationModel' — Generate validation model
'off' (default) | 'on'

For more information, see GenerateValidationModel.

'SimulatorFlags' — Options for generated compilation scripts
string

For more information, see SimulatorFlags.

'TestBenchReferencePostFix' — Suffix for test bench reference signals
'_ref' (default) | string

For more information, see TestBenchReferencePostFix.

Script Generation

'EDAScriptGeneration' — Enable or disable script generation for third-party tools
'on' (default) | 'off'

For more information, see EDAScriptGeneration.

'HDLCompileInit' — Compilation script initialization string
'vlib work\n' (default) | string

For more information, see HDLCompileInit.

'HDLCompileTerm' — Compilation script termination string
'' (default) | string

For more information, see HDLCompileTerm.

1 Functions — Alphabetical List

1-46

'HDLCompileFilePostfix' — Postfix for compilation script file name
'_compile.do' (default) | string

For more information, see HDLCompileFilePostfix.

'HDLCompileVerilogCmd' — Verilog compilation command
'vlog %s %s\n' (default) | string

Verilog compilation command, specified as a string. The SimulatorFlags name-value
pair specifies the first argument, and the module name specifies the second argument.

For more information, see HDLCompileVerilogCmd.

'HDLCompileVHDLCmd' — VHDL compilation command
'vcom %s %s\n' (default) | string

VHDL compilation command, specified as a string. The SimulatorFlags name-value
pair specifies the first argument, and the entity name specifies the second argument.

For more information, see HDLCompileVerilogCmd.

'HDLLintTool' — HDL lint tool
'None' (default) | 'AscentLint' | 'Leda' | 'SpyGlass' | 'Custom'

HDL lint tool, specified as a string.

For more information, see HDLLintTool.

'HDLLintInit' — HDL lint initialization string
string

HDL lint initialization, specified as a string. The default is derived from the
HDLLintTool name-value pair.

For more information, see HDLLintInit.

'HDLLintCmd' — HDL lint command
string

HDL lint command, specified as a string. The default is derived from the HDLLintTool
name-value pair.

For more information, see HDLLintCmd.

 makehdl

1-47

'HDLLintTerm' — HDL lint termination string
string

HDL lint termination, specified as a string. The default is derived from the
HDLLintTool name-value pair.

For more information, see HDLLintTerm.

'HDLSynthTool' — Synthesis tool
'None' (default) | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Vivado' | 'Custom'

HDL synthesis tool, specified as a string.

For more information, see HDLSynthTool.

'HDLSynthCmd' — HDL synthesis command
string

HDL synthesis command, specified as a string. The default is derived from the
HDLSynthTool name-value pair.

For more information, see HDLSynthCmd.

'HDLSynthFilePostfix' — Postfix for synthesis script file name
string

HDL synthesis script file name postfix, specified as a string. The default is derived from
the HDLSynthTool name-value pair.

For more information, see HDLSynthFilePostfix.

'HDLSynthInit' — Synthesis script initialization string
string

Initialization for the HDL synthesis script, specified as a string. The default is derived
from the HDLSynthTool name-value pair.

For more information, see HDLSynthInit.

'HDLSynthTerm' — Synthesis script termination string
string

1 Functions — Alphabetical List

1-48

Termination string for the HDL synthesis script. The default is derived from the
HDLSynthTool name-value pair.

For more information, see HDLSynthTerm.

Generated Model

'CodeGenerationOutput' — Display and generation of generated model
'GenerateHDLCode' (default) | 'GenerateHDLCodeAndDisplayGeneratedModel' |
'DisplayGeneratedModelOnly'

For more information, see CodeGenerationOutput.

'GeneratedModelName' — Generated model name
same as original model name (default) | string

For more information, see GeneratedModelName.

'GeneratedModelNamePrefix' — Prefix for generated model name
'gm_' (default) | string

For more information, see GeneratedModelNamePrefix.

'HighlightAncestors' — Highlight parent blocks of generated model blocks differing
from original model
'on' (default) | 'off'

For more information, see HighlightAncestors.

'HighlightColor' — Color of highlighted blocks in generated model
'cyan' (default) | 'yellow' | 'magenta' | 'red' | 'green' | 'blue' | 'white' |
'magenta' | 'black'

For more information, see HighlightColor.

Synthesis

'SynthesisTool' — Synthesis tool
'' (default) | 'Altera Quartus II' | 'Xilinx ISE' | 'Xilinx Vivado'

 makehdl

1-49

For more information, see SynthesisTool.

'MulticyclePathInfo' — Multicycle path constraint file generation
'off' (default) | 'on'

For more information, see MulticyclePathInfo.

Port Names and Types

'ClockEnableInputPort' — Clock enable input port name
'clk_enable' (default) | string

Clock enable input port name, specified as a string.

For more information, see ClockEnableInputPort.

'ClockEnableOutputPort' — Clock enable output port name
'ce_out' (default) | string

Clock enable output port name, specified as a string.

For more information, see ClockEnableOutputPort.

'ClockInputPort' — Clock input port name
'clk' (default) | string

Clock input port name, specified as a string.

For more information, see ClockInputPort.

'InputType' — HDL data type for input ports
'wire' or 'std_logic_vector' (default) | 'signed/unsigned'

HDL data type for input ports, specified as a string.

VHDL inputs can have 'std_logic_vector' or 'signed/unsigned' data type.
Verilog inputs must be 'wire'.

For more information, see InputType.

'OutputType' — HDL data type for output ports
'Same as input data type' (default) | 'std_logic_vector' | 'signed/
unsigned' | 'wire'

1 Functions — Alphabetical List

1-50

HDL data type for output ports, specified as a string.

VHDL output can be 'Same as input data type', 'std_logic_vector' or
'signed/unsigned'. Verilog output must be 'wire'.

For more information, see OutputType.

'ResetInputPort' — Reset input port name
'reset' (default) | string

Reset input port name, specified as a string.

For more information, see ResetInputPort.

File and Variable Names

'VerilogFileExtension' — Verilog file extension
'.v' (default) | string

For more information, see VerilogFileExtension.

'VHDLFileExtension' — VHDL file extension
'.vhd' (default) | string

For more information, see VHDLFileExtension.

'VHDLArchitectureName' — VHDL architecture name
'rtl' (default) | string

For more information, see VHDLArchitectureName.

'VHDLLibraryName' — VHDL library name
'work' (default) | string

For more information, see VHDLLibraryName.

'SplitEntityFilePostfix' — Postfix for VHDL entity file names
'_entity' (default) | string

For more information, see SplitEntityFilePostfix.

 makehdl

1-51

'SplitArchFilePostfix' — Postfix for VHDL architecture file names
'_arch' (default) | string

For more information, see SplitArchFilePostfix.

'PackagePostfix' — Postfix for package file name
'_pkg' (default) | string

For more information, see PackagePostfix.

'HDLMapFilePostfix' — Postfix for mapping file
'_map.txt' (default) | string

For more information, see HDLMapFilePostfix.

'BlockGenerateLabel' — Block label postfix for VHDL GENERATE statements
'_gen' (default) | string

For more information, see BlockGenerateLabel.

'ClockProcessPostfix' — Postfix for clock process names
'_process' (default) | string

For more information, see ClockProcessPostfix.

'ComplexImagPostfix' — Postfix for imaginary part of complex signal
'_im' (default) | string

For more information, see ComplexImagPostfix.

'ComplexRealPostfix' — Postfix for imaginary part of complex signal names
'_re' (default) | string

For more information, see ComplexRealPostfix.

'EntityConflictPostfix' — Postfix for duplicate VHDL entity or Verilog module names
'_block' (default) | string

For more information, see EntityConflictPostfix.

'InstanceGenerateLabel' — Instance section label postfix for VHDL GENERATE
statements
'_gen' (default) | string

1 Functions — Alphabetical List

1-52

For more information, see InstanceGenerateLabel.

'InstancePostfix' — Postfix for generated component instance names
'' (default) | string

For more information, see InstancePostfix.

'InstancePrefix' — Prefix for generated component instance names
'u_' (default) | string

For more information, see InstancePrefix.

'OutputGenerateLabel' — Output assignment label postfix for VHDL GENERATE
statements
'outputgen' (default) | string

For more information, see OutputGenerateLabel.

'PipelinePostfix' — Postfix for input and output pipeline register names
'_pipe' (default) | string

For more information, see PipelinePostfix.

'ReservedWordPostfix' — Postfix for names conflicting with VHDL or Verilog reserved
words
'_rsvd' (default) | string

For more information, see ReservedWordPostfix.

'TimingControllerPostfix' — Postfix for timing controller name
'_tc' (default) | string

For more information, see TimingControllerPostfix.

'VectorPrefix' — Prefix for vector names
'vector_of_' (default) | string

For more information, see VectorPrefix.

'EnablePrefix' — Prefix for internal enable signals
'enb' (default) | string

Prefix for internal clock enable and control flow enable signals, specified as a string.

 makehdl

1-53

For more information, see EnablePrefix.

'ModulePrefix' — Prefix for modules or entity names
'' (default) | string

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder
also applies this prefix to generated script file names

For more information, see ModulePrefix.

See Also
checkhdl | makehdltb

1 Functions — Alphabetical List

1-54

makehdltb

Generate HDL test bench from model or subsystem

Syntax

makehdltb(dut)

makehdltb(dut,Name,Value)

Description

makehdltb(dut) generates an HDL test bench from the specified subsystem or model
reference.

makehdltb(dut,Name,Value) generates an HDL test bench from the specified
subsystem or model reference with options specified by one or more name-value pair
arguments.

Examples

Generate VHDL Test Bench

Generate VHDL DUT and test bench for a subsystem.

Use makehdl to generate VHDL code for the subsystem symmetric_fir.

makehdl('sfir_fixed/symmetric_fir')

Generating HDL for 'sfir_fixed/symmetric_fir'.

Starting HDL check.

HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,

 and 0 messages.

Begin VHDL Code Generation for 'sfir_fixed'.

Working on sfir_fixed/symmetric_fir as

 hdlsrc\sfir_fixed\symmetric_fir.vhd

HDL code generation complete.

 makehdltb

1-55

After makehdl is complete, use makehdltb to generate a VHDL test bench for the same
subsystem.

makehdltb('sfir_fixed/symmetric_fir')

Begin TestBench generation.

Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.

Begin simulation of the model 'gm_sfir_fixed'...

Collecting data...

Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.vhd

Creating stimulus vectors...

HDL TestBench generation complete.

The generated VHDL test bench code is saved in the hdlsrc folder.

Generate Verilog Test Bench

Generate Verilog DUT and test bench for a subsystem.

Use makehdl to generate Verilog code for the subsystem symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Generating HDL for 'sfir_fixed/symmetric_fir'.

Starting HDL check.

HDL check for 'sfir_fixed' complete with 0 errors, 0 warnings,

 and 0 messages.

Begin Verilog Code Generation for 'sfir_fixed'.

Working on sfir_fixed/symmetric_fir as

 hdlsrc\sfir_fixed\symmetric_fir.v

HDL code generation complete.

After makehdl is complete, use makehdltb to generate a Verilog test bench for the same
subsystem.

makehdltb('sfir_fixed/symmetric_fir','TargetLanguage','Verilog')

Begin TestBench generation.

Generating HDL TestBench for 'sfir_fixed/symmetric_fir'.

Begin simulation of the model 'gm_sfir_fixed'...

Collecting data...

Generating test bench: hdlsrc\sfir_fixed\symmetric_fir_tb.v

Creating stimulus vectors...

HDL TestBench generation complete.

1 Functions — Alphabetical List

1-56

The generated Verilog test bench code is saved in the hdlsrc\sfir_fixed folder.

Input Arguments

dut — DUT subsystem or model reference name
string

DUT subsystem or model reference name, specified as a string, with full hierarchical
path.
Example: 'modelname/subsysTarget'

Example: 'modelname/subsysA/subsysB/subsysTarget'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: ‘TargetLanguage’,’Verilog’

Basic Options

'TargetLanguage' — Target language
'VHDL' (default) | 'Verilog'

For more information, see TargetLanguage.

'TargetDirectory' — Output directory
'hdlsrc' (default) | string

For more information, see TargetDirectory.

'SplitEntityArch' — Split VHDL entity and architecture into separate files
'off' (default) | 'on'

For more information, see SplitEntityArch.

 makehdltb

1-57

Test Bench

'ForceClock' — Force clock input
'on' (default) | 'off'

Specify that the generated test bench drives the clock enable input based on
ClockLowTime and ClockHighTime.

For more information, see ForceClock.

'ClockHighTime' — Clock high time
5 (default) | positive integer

Clock high time during a clock period, specified in nanoseconds.

For more information, see ClockHighTime.

'ClockLowTime' — Clock low time
5 (default) | positive integer

Clock low time during a clock period, specified in nanoseconds.

For more information, see ClockLowTime.

'ForceClockEnable' — Force clock enable input
'on' (default) | 'off'

Specify that the generated test bench drives the clock enable input.

For more information, see ForceClockEnable.

'ClockInputs' — Single or multiple clock inputs
'Single' (default) | 'Multiple'

Single or multiple clock inputs, specified as a string.

For more information, see ClockInputs.

'ForceReset' — Force reset input
'on' (default) | 'off'

Specify that the generated test bench drives the reset input.

1 Functions — Alphabetical List

1-58

For more information, see ForceReset.

'ResetLength' — Reset asserted time length
2 (default) | integer greater than or equal to 0

Length of time that reset is asserted, specified as the number of clock cycles.

For more information, see ResetLength.

'ResetAssertedLevel' — Asserted (active) level of reset
'active-high' (default) | 'active-low'

For more information, see ResetAssertedLevel.

'HoldInputDataBetweenSamples' — Hold valid data for signals clocked at slower rate
'on' (default) | 'off'

For more information, see HoldInputDataBetweenSamples.

'HoldTime' — Hold time for inputs and forced reset
2 (default) | positive integer

Hold time for inputs and forced reset, specified in nanoseconds.

For more information, see HoldTime.

'IgnoreDataChecking' — Time to wait after clock enable before checking output data
0 (default) | positive integer

Time after clock enable is asserted before starting output data checks, specified in
number of samples.

For more information, see IgnoreDataChecking.

'InitializeTestBenchInputs' — Initialize test bench inputs to 0
'off' (default) | 'on'

For more information, see InitializeTestBenchInputs.

'MultifileTestBench' — Divide generated test bench into helper functions, data, and
HDL test bench files
'off' (default) | 'on'

For more information, see MultifileTestBench.

 makehdltb

1-59

'UseFileIOInTestBench' — Use file I/O to read/write test bench data
'off' (default) | 'on'

For more information, see UseFileIOInTestBench.

'TestBenchClockEnableDelay' — Number of clock cycles between deassertion of reset
and assertion of clock enable
1 (default) | positive integer

For more information, see TestBenchClockEnableDelay.

'TestBenchDataPostFix' — Postfix for test bench data file name
'_data' (default) | string

For more information, see TestBenchDataPostFix.

'TestBenchPostFix' — Suffix for test bench name
'_tb' (default) | string

For more information, see TestBenchPostFix.

'GenerateCoSimBlock' — Generate HDL Cosimulation block
'off' (default) | 'on'

Generate an HDL Cosimulation block so you can simulate the DUT in Simulink with an
HDL simulator.

For more information, see GenerateCoSimBlock.

'GenerateCoSimModel' — Generate HDL Cosimulation model
'ModelSim' (default) | 'Incisive'

Generate a model containing an HDL Cosimulation block for the specified HDL
simulator.

For more information, see GenerateCoSimModel.

Coding Style

'UseVerilogTimescale' — Generate 'timescale compiler directives
'on' (default) | 'off'

1 Functions — Alphabetical List

1-60

For more information, see UseVerilogTimescale.

'DateComment' — Include time stamp in header
'on' (default) | 'off'

For more information, see DateComment.

'InlineConfigurations' — Include VHDL configurations
'on' (default) | 'off'

For more information, see InlineConfigurations.

'ScalarizePorts' — Flatten vector ports into scalar ports
'off' (default) | 'on'

For more information, see ScalarizePorts.

Script Generation

'HDLCompileInit' — Compilation script initialization string
'vlib work\n' (default) | string

For more information, see HDLCompileInit.

'HDLCompileTerm' — Compilation script termination string
'' (default) | string

For more information, see HDLCompileTerm.

'HDLCompileFilePostfix' — Postfix for compilation script file name
'_compile.do' (default) | string

For more information, see HDLCompileFilePostfix.

'HDLCompileVerilogCmd' — Verilog compilation command
'vlog %s %s\n' (default) | string

Verilog compilation command, specified as a string. The SimulatorFlags name-value
pair specifies the first argument, and the module name specifies the second argument.

For more information, see HDLCompileVerilogCmd.

 makehdltb

1-61

'HDLCompileVHDLCmd' — VHDL compilation command
'vcom %s %s\n' (default) | string

VHDL compilation command, specified as a string. The SimulatorFlags name-value
pair specifies the first argument, and the entity name specifies the second argument.

For more information, see HDLCompileVerilogCmd.

'HDLSimCmd' — HDL simulation command
'vsim -novopt %s.%s\n' (default) | string

The HDL simulation command, specified as a string.

For more information, see HDLSimCmd.

'HDLSimInit' — HDL simulation script initialization string
['onbreak resume\n', 'onerror resume\n'] (default) | string

Initialization for the HDL simulation script, specified as a string.

For more information, see HDLSimInit.

'HDLSimTerm' — HDL simulation script termination string
'run -all' (default) | string

The termination string for the HDL simulation command.

For more information, see HDLSimTerm.

'HDLSimFilePostfix' — Postscript for HDL simulation script
'_sim.do' (default) | string

For more information, see HDLSimFilePostfix.

'HDLSimViewWaveCmd' — HDL simulation waveform viewing command
'add wave sim:%s\n' (default) | string

Waveform viewing command, specified as a string. The implicit argument adds the signal
paths for the DUT top-level input, output, and output reference signals.

For more information, see HDLSimViewWaveCmd.

1 Functions — Alphabetical List

1-62

Port Names and Types

'ClockEnableInputPort' — Clock enable input port name
'clk_enable' (default) | string

Clock enable input port name, specified as a string.

For more information, see ClockEnableInputPort.

'ClockEnableOutputPort' — Clock enable output port name
'ce_out' (default) | string

Clock enable output port name, specified as a string.

For more information, see ClockEnableOutputPort.

'ClockInputPort' — Clock input port name
'clk' (default) | string

Clock input port name, specified as a string.

For more information, see ClockInputPort.

'ResetInputPort' — Reset input port name
'reset' (default) | string

Reset input port name, specified as a string.

For more information, see ResetInputPort.

File and Variable Names

'VerilogFileExtension' — Verilog file extension
'.v' (default) | string

For more information, see VerilogFileExtension.

'VHDLFileExtension' — VHDL file extension
'.vhd' (default) | string

 makehdltb

1-63

For more information, see VHDLFileExtension.

'VHDLArchitectureName' — VHDL architecture name
'rtl' (default) | string

For more information, see VHDLArchitectureName.

'VHDLLibraryName' — VHDL library name
'work' (default) | string

For more information, see VHDLLibraryName.

'SplitEntityFilePostfix' — Postfix for VHDL entity file names
'_entity' (default) | string

For more information, see SplitEntityFilePostfix.

'SplitArchFilePostfix' — Postfix for VHDL architecture file names
'_arch' (default) | string

For more information, see SplitArchFilePostfix.

'PackagePostfix' — Postfix for package file name
'_pkg' (default) | string

For more information, see PackagePostfix.

'ComplexImagPostfix' — Postfix for imaginary part of complex signal
'_im' (default) | string

For more information, see ComplexImagPostfix.

'ComplexRealPostfix' — Postfix for imaginary part of complex signal names
'_re' (default) | string

For more information, see ComplexRealPostfix.

'EnablePrefix' — Prefix for internal enable signals
'enb' (default) | string

Prefix for internal clock enable and control flow enable signals, specified as a string.

For more information, see EnablePrefix.

1 Functions — Alphabetical List

1-64

See Also
makehdl

2

Supported Blocks

2 Supported Blocks

2-2

1-D Lookup Table
1-D Lookup Table implementations, properties, and restrictions for HDL code generation

Description

The 1-D Lookup Table block is a one-dimensional version of the n-D Lookup Table block.
For HDL code generation information, see n-D Lookup Table.

 2-D Lookup Table

2-3

2-D Lookup Table
2-D Lookup Table implementations, properties, and restrictions for HDL code generation

Description

The 2-D Lookup Table block is a two-dimensional version of the n-D Lookup Table block.
For HDL code generation information, see n-D Lookup Table.

2 Supported Blocks

2-4

Abs
Abs implementations, properties, and restrictions for HDL code generation

Description

The Abs block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Abs.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Add

2-5

Add
Add implementations, properties, and restrictions for HDL code generation

Description

The Add block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Add.

HDL Architecture

The default Linear architecture generates a chain of N operations (adders) for N inputs.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default Linear implementation supports complex data.

2 Supported Blocks

2-6

Assertion
Assertion implementations, properties, and restrictions for HDL code generation

Description

The Assertion block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Assertion.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Assignment

2-7

Assignment
Assignment implementations, properties, and restrictions for HDL code generation

Description

The Assignment block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Assignment.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-8

Atomic Subsystem

Atomic Subsystem implementations, properties, and restrictions for HDL code generation

Description

The Atomic Subsystem block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Atomic
Subsystem.

HDL Architecture

Architecture Description

Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black-box interface. That is, the generated HDL code

includes only the input/output port definitions for the subsystem. In this
way, you can use a subsystem in your model to generate an interface to
existing, manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of
the external component interface. See “Customize Black Box or HDL Cosimulation
Interface”.

 Atomic Subsystem

2-9

HDL Block Properties

General

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-10

Target Specification

If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the values are loaded in the corresponding fields.

ProcessorFPGASynchronization
Processor / FPGA synchronization mode, specified as a string.

In the HDL Workflow Advisor, you can set this property in the Processor/FPGA
Synchronization field.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

In the HDL Workflow Advisor, you can set this property in the Additional source
files field.

Values: '' (default) | string

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a string.

In the HDL Workflow Advisor, you can set this property using the IP core name
field. If this property is set to the default value, the HDL Workflow Advisor
constructs the IP core name based on the name of the DUT.

Values: '' (default) | string

Example: 'my_model_name'

 Atomic Subsystem

2-11

IPCoreVersion
IP core version number, specified as a string.

In the HDL Workflow Advisor, you can set this property using the IP core version
field. If this property is set to the default value, the HDL Workflow Advisor sets the
IP core version.

Values: '' (default) | string

Example: '1.3'

More About
• “External Component Interfaces”
• “Generate Black Box Interface for Subsystem”

2 Supported Blocks

2-12

Backlash
Backlash implementations, properties, and restrictions for HDL code generation

Description

The Backlash block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Backlash.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

The Deadband width and Initial output parameters support only scalar values.

 Bias

2-13

Bias
Bias implementations, properties, and restrictions for HDL code generation

Description

The Bias block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bias.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-14

Bit Clear
Bit Clear implementations, properties, and restrictions for HDL code generation

Description

The Bit Clear block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit
Clear.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Bit Concat

2-15

Bit Concat
Bit Concat implementations, properties, and restrictions for HDL code generation

Description

The Bit Concat block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit
Concat.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

2 Supported Blocks

2-16

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

 Bit Reduce

2-17

Bit Reduce
Bit Reduce implementations, properties, and restrictions for HDL code generation

Description

The Bit Reduce block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit
Reduce.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

2 Supported Blocks

2-18

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

 Bit Rotate

2-19

Bit Rotate
Bit Rotate implementations, properties, and restrictions for HDL code generation

Description

The Bit Rotate block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit
Rotate.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

2 Supported Blocks

2-20

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

 Bit Set

2-21

Bit Set
Bit Set implementations, properties, and restrictions for HDL code generation

Description

The Bit Set block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit Set.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-22

Bit Shift
Bit Shift implementations, properties, and restrictions for HDL code generation

Description

The Bit Shift block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit
Shift.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Bit Shift

2-23

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-24

Bit Slice
Bit Slice implementations, properties, and restrictions for HDL code generation

Description

The Bit Slice block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bit Slice.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline

 Bit Slice

2-25

Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-26

Bitwise Operator
Bitwise Operator implementations, properties, and restrictions for HDL code generation

Description

The Bitwise Operator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bitwise
Operator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Biquad Filter

2-27

Biquad Filter
Biquad Filter implementations, properties, and restrictions for HDL code generation

Description

The Biquad Filter block is available with DSP System Toolbox™.

For information on the Simulink simulation behavior and block parameters, see Biquad
Filter.

HDL Architecture

Programmable Filter Support

HDL Coder supports programmable filters for Biquad Filters. A fully parallel
architecture is supported.

1 Select Input port(s) as coefficient source on the filter block mask.
2 Connect the coefficient port with a vector signal.
3 Specify the implementation architecture and parameters from the HDL Coder

property interface.

The following configurations are not supported for programmable filters:

• Fully serial and partly serial architectures
• CoeffMultipliers as csd or factored-csd

4 Generate HDL code.

Serial Architecture Support

The Biquad Filter block supports fully parallel, fully serial, and partly serial
architectures for Direct form I and Direct form II filter structures. Serial
architecture is not supported for Direct form I transposed and Direct form II
transposed filter structures.

2 Supported Blocks

2-28

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

Filter Structure Pipeline Register Placement Latency (clock cycles)

any Pipeline registers are added
between the filter sections.

Where NS is number of
sections:
NS-1

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area
by replacing coefficient multipliers with shift and add logic. When you choose a fully
parallel filter implementation, you can set this parameter to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. For more
information, see CoeffMultipliers.

FoldingFactor
Specify a serial implementation of an IIR SOS filter by the number of cycles it takes
to generate the result. See also FoldingFactor.

NumMultipliers
Specify a serial implementation of an IIR SOS filter by the number of hardware
multipliers that are generated. See also NumMultipliers.

For HDL filter property descriptions, see “HDL Filter Block Properties”.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Biquad Filter

2-29

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• Data vector and frame inputs are not supported for HDL code generation.
• You must set Initial conditions to zero. HDL code generation is not supported for

nonzero initial states.
• You must select Optimize unity scale values.

2 Supported Blocks

2-30

BPSK Demodulator Baseband
BPSK Demodulator Baseband implementations, properties, and restrictions for HDL
code generation

Description

The BPSK Demodulator Baseband block is available with Communications System
Toolbox™.

For information on the Simulink simulation behavior and block parameters, see BPSK
Demodulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 BPSK Modulator Baseband

2-31

BPSK Modulator Baseband
BPSK Modulator Baseband implementations, properties, and restrictions for HDL code
generation

Description

The BPSK Modulator Baseband block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see BPSK
Modulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-32

Bus Assignment
Bus Assignment implementations, properties, and restrictions for HDL code generation

Description

The Bus Assignment block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bus
Assignment.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

HDL code generation does not support nonvirtual inputs.

 Bus Assignment

2-33

More About
• “Buses”

2 Supported Blocks

2-34

Bus Creator

Bus Creator implementations, properties, and restrictions for HDL code generation

Description

The Bus Creator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bus
Creator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Bus Creator

2-35

Restrictions

Setup

• Set the Simulation > Configuration Parameters > Diagnostics >
Connectivity+Mux blocks used to create bus signals parameter to error. For
details, see “Prevent Bus and Mux Mixtures”.

• Make sure that Output as nonvirtual bus is not selected.
• Make sure that Bus Creator output is a BusObject.

2 Supported Blocks

2-36

 Bus Creator

2-37

More About
• “Buses”

2 Supported Blocks

2-38

Bus Selector
Bus Selector implementations, properties, and restrictions for HDL code generation

Description
The Bus Selector block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Bus
Selector.

HDL Architecture
This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
You must set the Simulation > Configuration Parameters > Diagnostics >
Connectivity+Mux blocks used to create bus signals parameter to error. For
details, see “Prevent Bus and Mux Mixtures”.

 Bus Selector

2-39

More About
• “Buses”

2 Supported Blocks

2-40

Chart
Chart implementations, properties, and restrictions for HDL code generation

Description

The Chart block is available with Stateflow®.

For information on the Simulink simulation behavior and block parameters, see Chart.

HDL Architecture

This block has a single default HDL architecture.

Active State Output

To generate an output port in the HDL code that shows the active state, select Create
output port for monitoring in the Properties window of the chart. The output is an
enumerated data type. See “Use Active State Output”.

Registered Output

If you want to insert an output register that delays the chart output by a simulation
cycle, use the OutputPipeline block property.

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Chart

2-41

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

2 Supported Blocks

2-42

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a string, with spaces separating the
variables.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• “Location of Charts in the Model” on page 2-42
• “Data Types” on page 2-42
• “Chart Initialization” on page 2-43
• “Imported Code” on page 2-43
• “Input and Output Events” on page 2-44
• “Loops” on page 2-44
• “Other Restrictions” on page 2-44

Location of Charts in the Model

A chart intended for HDL code generation must be part of a Simulink subsystem. If the
chart for which you want to generate code is at the root level of your model, embed the
chart in a subsystem. Connect the relevant signals to the subsystem inputs and outputs.

Data Types

The current release supports a subset of MATLAB data types in charts intended for use
in HDL code generation. Supported data types are

• Signed and unsigned integer
• Double and single

Note: Some results obtained from HDL code generated for models using double or
single data types are not bit-true to results from simulation of the original model.

 Chart

2-43

• Fixed point
• Boolean
• Enumeration

Note: With the exception of data types assigned to ports, multidimensional arrays of
these types are supported. Port data types must be either scalar or vector.

Chart Initialization

You must enable the chart property Execute (enter) Chart at Initialization. This
option executes the update chart function immediately following chart initialization.
The option is required for HDL because outputs must be available at time 0 (hardware
reset). “Execution of a Chart at Initialization” describes existing restrictions under this
property.

The reset action must not entail the delay of combinatorial logic. Therefore, do not
perform arithmetic in initialization actions.

Enable the Initialize Outputs Every Time Chart Wakes Up chart property to
generate HDL code that is more readable and has better synthesis results. If you disable
Initialize Outputs Every Time Chart Wakes Up, the chart output is persistent, so
the generated HDL code must internally register the output values.

Imported Code

A chart intended for HDL code generation must be entirely self-contained. The following
restrictions apply:

• Do not call MATLAB functions other than min or max.
• Do not use MATLAB workspace data.
• Do not call C math functions. HDL does not have a counterpart to the C math library.
• If the Enable bit operations property is disabled, do not use the exponentiation

operator (^). The exponentiation operator is implemented with the C Math Library
function pow.

• Do not include custom code. Information entered on the Simulation Target >
Custom Code pane in the Configuration Parameters dialog box is ignored.

2 Supported Blocks

2-44

• Do not share data (via Data Store Memory blocks) between charts. HDL Coder does
not map such global data to HDL because HDL does not support global data.

Input and Output Events

HDL Coder supports the use of input and output events with Stateflow charts, subject to
the following constraints:

• You can define and use only one input event per Stateflow chart. (There is no
restriction on the number of output events that you can use.)

• The coder does not support HDL code generation for charts that have a single input
event, and which also have nonzero initial values on the chart's output ports.

• All input and output events must be edge-triggered.

For detailed information on input and output events, see “Activate a Stateflow Chart
Using Input Events” and “Activate a Simulink Block Using Output Events” in the
Stateflow documentation.

Loops

Other than for loops, do not explicitly use loops in a chart intended for HDL code
generation. Observe the following restrictions on for loops:

• The data type of the loop counter variable must be int32.
• HDL Coder supports only constant-bounded loops.

The for loop example, sf_for, shows a design pattern for a for loop using a graphical
function.

Other Restrictions

HDL Coder imposes additional restrictions on the use of classic chart features. These
limitations exist because HDL does not support some features of general-purpose
sequential programming languages.

• Do not define local events in a chart from which HDL code is generated.

Do not use the following implicit events:

• enter

 Chart

2-45

• exit

• change

You can use the following implicit events:

• wakeup

• tick

You can use temporal logic provided that the base events are limited to these types of
implicit events.

Note: Absolute-time temporal logic is not supported for HDL code generation.
• Do not use recursion through graphical functions. HDL Coder does not currently

support recursion.
• Avoid unstructured code. Although charts allow unstructured code (through transition

flow diagrams and graphical functions), this usage results in goto statements and
multiple function return statements. HDL does not support either goto statements
or multiple function return statements. Therefore, do not use unstructured flow
diagrams.

• If you have not selected the Initialize Outputs Every Time Chart Wakes Up chart
option, do not read from output ports.

• Do not use Data Store Memory objects.
• Do not use pointer (&) or indirection (*) operators. See “Pointer and Address

Operations”.
• If a chart gets a run-time overflow error during simulation, it is possible to disable

data range error checking and generate HDL code for the chart. However, in such
cases, some results obtained from the generated HDL code might not be bit-true to
results from the simulation. The recommended practice is to enable overflow checking
and eliminate overflow conditions from the model during simulation.

See Also
State Transition Table | Truth Table

Related Examples
• “Generate HDL for Mealy and Moore Finite State Machines”

2 Supported Blocks

2-46

• “Design Patterns Using Advanced Chart Features”

More About
• “Hardware Realization of Stateflow Semantics”

 Check Dynamic Gap

2-47

Check Dynamic Gap
Check Dynamic Gap implementations, properties, and restrictions for HDL code
generation

Description

The Check Dynamic Gap block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Dynamic Gap.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-48

Check Dynamic Range
Check Dynamic Range implementations, properties, and restrictions for HDL code
generation

Description

The Check Dynamic Range block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Dynamic Range.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Check Static Gap

2-49

Check Static Gap
Check Static Gap implementations, properties, and restrictions for HDL code generation

Description

The Check Static Gap block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Static Gap.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-50

Check Static Range
Check Static Range implementations, properties, and restrictions for HDL code
generation

Description

The Check Static Range block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Static Range.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Check Discrete Gradient

2-51

Check Discrete Gradient
Check Discrete Gradient implementations, properties, and restrictions for HDL code
generation

Description

The Check Discrete Gradient block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Discrete Gradient.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-52

Check Dynamic Lower Bound
Check Dynamic Lower Bound implementations, properties, and restrictions for HDL code
generation

Description

The Check Dynamic Lower Bound block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Dynamic Lower Bound.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Check Dynamic Upper Bound

2-53

Check Dynamic Upper Bound
Check Dynamic Upper Bound implementations, properties, and restrictions for HDL code
generation

Description

The Check Dynamic Upper Bound block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Dynamic Upper Bound.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-54

Check Input Resolution
Check Input Resolution implementations, properties, and restrictions for HDL code
generation

Description

The Check Input Resolution block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Input Resolution.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Check Static Lower Bound

2-55

Check Static Lower Bound
Check Static Lower Bound implementations, properties, and restrictions for HDL code
generation

Description

The Check Static Lower Bound block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Static Lower Bound.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-56

Check Static Upper Bound
Check Static Upper Bound implementations, properties, and restrictions for HDL code
generation

Description

The Check Static Upper Bound block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Check
Static Upper Bound.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Chroma Resampler

2-57

Chroma Resampler
Chroma Resampler implementations, properties, and restrictions for HDL code
generation

Description

The Chroma Resampler block is available with Vision HDL Toolbox™.

For information on the Simulink simulation behavior and block parameters, see Chroma
Resampler.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-58

CIC Decimation
CIC Decimation implementations, properties, and restrictions for HDL code generation

Description

The CIC Decimation block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see CIC
Decimation.

HDL Coder supports Coefficient source options Dialog parameters and Filter
object.

HDL Architecture

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

Pipeline Register Placement Latency (clock cycles)

A pipeline register is added between the
comb stages of the differentiators.

NS-1, where NS is number of sections (at
the input side).

HDL Filter Properties

AddPipelineRegisters
Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

HDL Block Properties

ConstrainedOutputPipeline

 CIC Decimation

2-59

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency

decimator is not supported for HDL code generation. From the Filter Structure
drop-down list, select Decimator.

2 Supported Blocks

2-60

CIC Interpolation
CIC Interpolation implementations, properties, and restrictions for HDL code generation

Description

The CIC Interpolation block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see CIC
Interpolation.

HDL Coder supports Coefficient source options Dialog parameters and Filter
object.

HDL Architecture

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

Pipeline Register Placement Latency (clock cycles)

A pipeline register is added between the
comb stages of the differentiators.

NS, the number of sections (at the input
side).

HDL Filter Properties

AddPipelineRegisters
Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

HDL Block Properties

ConstrainedOutputPipeline

 CIC Interpolation

2-61

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the Filter Structure option Zero-latency

interpolator is not supported for HDL code generation. From the Filter
Structure drop-down list, select Interpolator.

2 Supported Blocks

2-62

Closing
Closing implementations, properties, and restrictions for HDL code generation

Description

The Closing block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Closing.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Color Space Converter

2-63

Color Space Converter
Color Space Converter implementations, properties, and restrictions for HDL code
generation

Description

The Color Space Converter block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Color
Space Converter.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-64

Coulomb and Viscous Friction
Coulomb and Viscous Friction implementations, properties, and restrictions for HDL
code generation

Description

The Coulomb and Viscous Friction block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Coulomb
and Viscous Friction.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

HDL code generation does not support complex input.

 Compare To Constant

2-65

Compare To Constant
Compare To Constant implementations, properties, and restrictions for HDL code
generation

Description

The Compare To Constant block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Compare
To Constant.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-66

Compare To Zero
Compare To Zero implementations, properties, and restrictions for HDL code generation

Description

The Compare To Zero block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Compare
To Zero.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Complex to Magnitude-Angle HDL Optimized

2-67

Complex to Magnitude-Angle HDL Optimized
Complex to Magnitude-Angle HDL Optimized implementations, properties, and
restrictions for HDL code generation

Description
The Complex to Magnitude-Angle HDL Optimized block is available with DSP System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see Complex
to Magnitude-Angle HDL Optimized.

HDL Architecture
This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support
This block supports code generation for complex signals.

2 Supported Blocks

2-68

Complex to Real-Imag
Complex to Real-Imag implementations, properties, and restrictions for HDL code
generation

Description

The Complex to Real-Imag block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Complex
to Real-Imag.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Constant

2-69

Constant
Constant implementations, properties, and restrictions for HDL code generation

Description

The Constant block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Constant.

Tunable Parameters

You can use a tunable parameter in a Constant block intended for HDL code generation.
For details, see “Generate DUT Ports For Tunable Parameters”.

HDL Architecture

Architecture Parameters Description

default

Constant

None This implementation emits the value of the
Constant block.

None By default, this implementation emits the
character 'Z' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'ZZZZ'.

{'Value', 'Z'} If the signal is in a high-impedance state, use
this parameter value. This implementation
emits the character 'Z' for each bit in the
signal. For example, for a 4-bit signal, the
implementation would emit 'ZZZZ'.

Logic Value

{'Value', 'X'} If the signal is in an unknown state, use this
parameter value. This implementation emits
the character 'X' for each bit in the signal. For
example, for a 4-bit signal, the implementation
would emit 'XXXX'.

2 Supported Blocks

2-70

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• The Logic Value implementation does not support the double data type. If you
specify this implementation for a constant value of type double, a code generation
error occurs.

• For Sample time, enter -1. Delay balancing does not support an inf sample time.
• When Output data type is a bus object, Constant value cannot be 0.

 Constellation Diagram

2-71

Constellation Diagram
Constellation Diagram implementations, properties, and restrictions for HDL code
generation

Description

The Constellation Diagram block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Constellation Diagram.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-72

Convert 1-D to 2-D
Convert 1-D to 2-D implementations, properties, and restrictions for HDL code
generation

Description

The Convert 1-D to 2-D block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Convert
1-D to 2-D.

HDL Architecture

This block has a pass-through implementation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Convolutional Deinterleaver

2-73

Convolutional Deinterleaver
Convolutional Deinterleaver implementations, properties, and restrictions for HDL code
generation

Description

The Convolutional Deinterleaver block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Convolutional Deinterleaver.

HDL Architecture

• “Shift Register Based Implementation” on page 2-73
• “RAM Based Implementation” on page 2-73

Shift Register Based Implementation

The default implementation for the Convolutional Deinterleaver block is shift register-
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType to'none'.

When you set ResetType to'none', reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fully load the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

RAM Based Implementation

When you select the RAM implementation for a Convolutional Deinterleaver block, HDL
Coder uses RAM resources instead of shift registers.

2 Supported Blocks

2-74

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

 Convolutional Encoder

2-75

Convolutional Encoder
Convolutional Encoder implementations, properties, and restrictions for HDL code
generation

Description

The Convolutional Encoder block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Convolutional Encoder.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

Input data requirements:

2 Supported Blocks

2-76

• Must be sample-based,
• Must have a boolean or ufix1 data type.

HDL Coder supports only the following coding rates:

• ½ to 1/7
• 2/3

The coder supports only constraint lengths for 3 to 9.

Trellis structure must be specified by the poly2trellis function.

The coder supports the following Operation mode settings:

• Continuous

• Reset on nonzero input via port

If you select this mode, you must select the Delay reset action to next time step
option. When you select this option, the Convolutional Encoder block finishes its
current computation before executing a reset.

 Convolutional Interleaver

2-77

Convolutional Interleaver

Convolutional Interleaver implementations, properties, and restrictions for HDL code
generation

Description

The Convolutional Interleaver block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Convolutional Interleaver.

HDL Architecture

• “Shift Register Based Implementation” on page 2-77
• “RAM Based Implementation” on page 2-77

Shift Register Based Implementation

The default implementation for the Convolutional Interleaver block is shift register-
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType to'none'.

When you set ResetType to 'none', reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fully load the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

RAM Based Implementation

When you select the RAM implementation for a Convolutional Interleaver block, HDL
Coder uses RAM resources instead of shift registers.

2 Supported Blocks

2-78

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Restrictions

When you select the RAM implementation:

• Double or single data types are not supported for either input or output signals.
• You must set Initial conditions for the block to zero.
• At least two rows of interleaving are required.

 Cosine

2-79

Cosine

Cosine implementations, properties, and restrictions for HDL code generation

Description

The Cosine block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sine,
Cosine.

HDL Architecture

The HDL code implements Cosine using the quarter-wave lookup table that you specify
in the Simulink block parameters.

To avoid generating a division operator (/) in the HDL code, for Number of data points
for lookup table, enter (2^n)+1. n is an integer.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-80

Restrictions

This block does not have restrictions for HDL code generation.

If you see the following warnings for the Sine or Cosine block, you can ignore them.

• HDL code generation for the Lookup Table (n-D) block does not

support out-of-range inputs. Set the "Diagnostic for out of range

input" block parameter to "Error" to suppress this warning.

• Using linear interpolation on the Lookup Table (n-D) block, may

require using a divide operator in the generated HDL, which may

not be synthesizable.

 Counter Free-Running

2-81

Counter Free-Running
Counter Free-Running implementations, properties, and restrictions for HDL code
generation

Description

The Counter Free-Running block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Counter
Free-Running.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-82

Counter Limited
Counter Limited implementations, properties, and restrictions for HDL code generation

Description

The Counter Limited block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Counter
Limited.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Data Type Conversion

2-83

Data Type Conversion
Data Type Conversion implementations, properties, and restrictions for HDL code
generation

Description

The Data Type Conversion block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Data
Type Conversion.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-84

Restrictions

If you configure a Data Type Conversion block for double to fixed-point conversion or
fixed-point to double conversion, a warning is displayed during code generation.

 Data Type Duplicate

2-85

Data Type Duplicate
Data Type Duplicate implementations, properties, and restrictions for HDL code
generation

Description

The Data Type Duplicate block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Data
Type Duplicate.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-86

Data Type Propagation
Data Type Propagation implementations, properties, and restrictions for HDL code
generation

Description

The Data Type Propagation block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Data
Type Propagation.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Dead Zone

2-87

Dead Zone
Dead Zone implementations, properties, and restrictions for HDL code generation

Description

The Dead Zone block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Dead
Zone.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-88

DC Blocker
DC Blocker implementations, properties, and restrictions for HDL code generation

Description

The DC Blocker block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see DC
Blocker.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 DC Blocker

2-89

Restrictions

• CIC mode is not supported for HDL code generation.

2 Supported Blocks

2-90

Dead Zone Dynamic
Dead Zone Dynamic implementations, properties, and restrictions for HDL code
generation

Description

The Dead Zone Dynamic block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Dead
Zone Dynamic.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Decrement Real World

2-91

Decrement Real World
Decrement Real World implementations, properties, and restrictions for HDL code
generation

Description

The Decrement Real World block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Decrement Real World.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-92

Decrement Stored Integer
Decrement Stored Integer implementations, properties, and restrictions for HDL code
generation

Description

The Decrement Stored Integer block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Decrement Stored Integer.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Delay

2-93

Delay

Delay implementations, properties, and restrictions for HDL code generation

Description

The Delay block is available with Simulink. For information on the Simulink simulation
behavior and block parameters, see Delay.

To generate a reset port in the HDL code, set External reset to Level.

To generate an enable port in the HDL code, select Show enable port.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

UseRAM
Map delays to RAM instead of registers. The default is off. See also “UseRAM”.

2 Supported Blocks

2-94

Complex Data Support

This block supports code generation for complex signals.

 Delay (Obsolete)

2-95

Delay (Obsolete)
Delay implementations, properties, and restrictions for HDL code generation

Description

The Delay block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Delay.

Note: The Delay block from the dspsigops library has been replaced by the Delay block
from the Discrete library in Simulink. Existing instances of the dspsigops Delay block
will be replaced with Simulink Delay block when there is an exact match in functionality
between the two blocks. For new models, use the Delay block from the Discrete library in
Simulink.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-96

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

UseRAM
Map delays to RAM instead of registers. The default is off. See also “UseRAM”.

Complex Data Support

This block supports code generation for complex signals.

 Demosaic Interpolator

2-97

Demosaic Interpolator
Demosaic Interpolator implementations, properties, and restrictions for HDL code
generation

Description

The Demosaic Interpolator block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Demosaic Interpolator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-98

Demux
Demux implementations, properties, and restrictions for HDL code generation

Description

The Demux block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Demux.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Deserializer1D

2-99

Deserializer1D
Deserializer1D implementations, properties, and restrictions for HDL code generation

Description

The Deserializer1D block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Deserializer1D.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-100

Digital Filter (Obsolete)

Digital Filter implementations, properties, and restrictions for HDL code generation

Description

The Digital Filter block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Digital
Filter.

Note: Use of Digital Filter block in future releases is not recommended. Existing
instances will continue to operate, but certain functionality will be disabled. See
“Functionality being removed or replaced for blocks and System objects”. We strongly
recommend using Discrete FIR Filter or Biquad Filter in new designs.

HDL Architecture

When you specify SerialPartition and ReuseAccum for a Digital Filter block, observe
the following constraints.

• If you specify Dialog parameters as the Coefficient source:

• Set Transfer function type to FIR (all zeros).
• Select Filter structure as one of : Direct form,, Direct form symmetric,

or Direct form asymmetric.

• If you specify Discrete-time filter object as the Coefficient source, the filter
object must be one of the following:

• dfilt.dffir

• dfilt.dfsymfir

• dfilt.dfasymfir

 Digital Filter (Obsolete)

2-101

Distributed Arithmetic Support

Distributed Arithmetic properties DALUTPartition and DARadix are supported for
the following filter structures.

Architecture Supported FIR Structures

default • dfilt.dffir
• dfilt.dfsymfir
• dfilt.dfasymfir

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

Architecture Pipeline Register Placement Latency (clock cycles)

FIR, Asymmetric FIR, and
Symmetric FIR filters

A pipeline register is added
between levels of a tree-
based adder.

ceil(log2(FL)).
FL is the filter length.

FIR Transposed A pipeline register is added
after the products.

1

IIR SOS Pipeline registers are added
between the filter sections.

NS-1.
NS is the number of sections.

HDL Filter Properties

AddPipelineRegisters
Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area
by replacing coefficient multipliers with shift and add logic. When you choose a fully
parallel filter implementation, you can set this parameter to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. For more
information, see CoeffMultipliers.

2 Supported Blocks

2-102

DALUTPartition
Specify Distributed Arithmetic partial-product LUT partitions as a vector of the
sizes of each partition. The sum of all vector elements must be equal to the filter
length. The maximum size for a partition is 12 taps. Set this parameter to a scalar
value equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

ReuseAccum
Enable or disable accumulator reuse in a serial filter implementation. Set this
parameter to on to use a Cascade-serial implementation. See also ReuseAccum.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Coefficients and Data Support
Except for decimator and interpolator filter structures, HDL Coder supports use of
complex coefficients and complex input signals for all filter structures of the Digital

 Digital Filter (Obsolete)

2-103

Filter block. In many cases, you can use complex data and complex coefficients in
combination. The following table shows the filter structures that support complex data or
coefficients, and the permitted combinations.

Filter Structure Complex
Data

Complex
Coefficients

Complex Data
and Coefficients

dfilt.dffir Y Y Y
dfilt.dfsymfir Y Y Y
dfilt.dfasymfir Y Y Y
dfilt.dffirt Y Y Y
dfilt.scalar Y Y Y
dfilt.delay Y N/A N/A
mfilt.cicdecim Y N/A N/A
mfilt.cicinterp Y N/A N/A
mfilt.firdecim Y Y N
mfilt.firinterp Y Y N
dfilt.df1sos Y Y Y
dfilt.df1tsos Y Y Y
dfilt.df2sos Y Y Y
dfilt.df2tsos Y Y Y

Restrictions

• If you select the Digital Filter block Discrete-time filter object option, you must
have the DSP System Toolbox software to generate code for the block.

• You must set Initial conditions to zero. HDL code generation is not supported for
nonzero initial states.

• HDL Coder does not support the Digital Filter block Input port(s) option for HDL
code generation.

2 Supported Blocks

2-104

Direct Lookup Table (n-D)
Direct Lookup Table (n-D) implementations, properties, and restrictions for HDL code
generation

Description

The Direct Lookup Table (n-D) block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Direct
Lookup Table (n-D).

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• “Required Block Settings” on page 2-105

 Direct Lookup Table (n-D)

2-105

• “Table Data Typing and Sizing” on page 2-105

Required Block Settings

• Number of table dimensions: HDL Coder supports a maximum dimension of 2.
• Inputs select this object from table: Select Element.
• Make table an input: Clear this check box.
• Diagnostic for out-of-range input: Select Error. If you select other options, the

coder displays a warning.

Table Data Typing and Sizing

• It is good practice to size each dimension in the table to be a power of two. If the
length of a dimension (except the innermost dimension) is not a power of two, HDL
Coder issues a warning. By following this practice, you can avoid multiplications
during table indexing operations and realize a more efficient table in hardware.

• Table data must resolve to a nonfloating-point data type. The coder examines the
output port to verify that its data type meets this requirement.

• All ports on the block require scalar values.

2 Supported Blocks

2-106

Discrete FIR Filter

Discrete FIR Filter implementations, properties, and restrictions for HDL code
generation

Description

The Discrete FIR Filter block is available with Simulink, but a DSP System Toolbox
license is required to use a filter structure other than Direct Form.

For information on the Simulink simulation behavior and block parameters, see Discrete
FIR Filter.

Multichannel Filter Support

HDL Coder supports the use of vector inputs for Discrete FIR Filters.

1 Connect vector signals to the Discrete FIR Filter block input port.
2 Specify Input processing as Elements as channels (sample based).
3 Specify architecture and implementation parameters.
4 Specify channel sharing option as on for fully parallel support.
5 Generate HDL code.

Programmable Filter Support

HDL Coder supports programmable filters for Discrete FIR Filters. Fully parallel and
applicable serial architectures are supported.

1 Select Input port(s) as the coefficient source on the filter block mask.
2 Connect the coefficient port with a vector signal.
3 From the HDL Coder block properties interface, specify the implementation

architecture and parameters.
4 Generate HDL code.

 Discrete FIR Filter

2-107

HDL Architecture

When you specify SerialPartition and ReuseAccum for a Discrete FIR Filter block,
select Filter structure as one of the following:

• Direct form

• Direct form symmetric

• Direct form asymmetric

Distributed Arithmetic Support

Distributed Arithmetic properties DALUTPartition and DARadix are supported for
the following filter structures.

Architecture Supported FIR Structures

default • dfilt.dffir
• dfilt.dfsymfir
• dfilt.dfasymfir

HDL Filter Properties

AddPipelineRegisters
Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

ChannelSharing
For a multi-channel filter, generate a single filter implementation to be shared
between channels. See also ChannelSharing.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area
by replacing coefficient multipliers with shift and add logic. When you choose a fully
parallel filter implementation, you can set this parameter to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. For more
information, see CoeffMultipliers.

DALUTPartition

2 Supported Blocks

2-108

Specify Distributed Arithmetic partial-product LUT partitions as a vector of the
sizes of each partition. The sum of all vector elements must be equal to the filter
length. The maximum size for a partition is 12 taps. Set this parameter to a scalar
value equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many Distributed Arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

ReuseAccum
Enable or disable accumulator reuse in a serial filter implementation. Set this
parameter to on to use a Cascade-serial implementation. See also ReuseAccum.

SerialPartition
Specify partitions for partly serial or Cascade-serial filter implementations as a
vector of the lengths of each partition. For a fully serial implementation, set this
parameter to the length of the filter. See also SerialPartition.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Discrete FIR Filter

2-109

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• HDL Coder does not support unsigned inputs for the Discrete FIR Filter block.
• You must set Initial conditions to zero. HDL code generation is not supported for

nonzero initial states.
• The coder does not support the following options of the Discrete FIR Filter block:

• Filter Structure : Lattice MA
• CoeffMultipliers options are supported only when using a fully parallel

architecture. When you select a serial architecture, the CoeffMultipliers property is
hidden from the HDL Block Properties dialog box.

Programmable filters are not supported for:

• Architectures for which you specify the coefficients by dialog box parameters (for
example, complex input and coefficients with serial architecture)

• Distributed Arithmetic (DA)
• CoeffMultipliers as csd or factored-csd

Related Examples
• Generate HDL Code for FIR Programmable Filter

../../dsp/examples/generate-hdl-code-for-programmable-fir-filter.html

2 Supported Blocks

2-110

Discrete PID Controller
Discrete PID Controller implementations, properties, and restrictions for HDL code
generation

Description

The Discrete PID Controller block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Discrete
PID Controller.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

HDL code generation does not support the following settings:

 Discrete PID Controller

2-111

• Continuous-time.
• Filter method > Backward Euler or Trapezoidal.
• Source > external.
• External reset > rising, falling, either, or level.
• If inputs are of type Double, Anti-windup method > clamping.

2 Supported Blocks

2-112

Discrete Transfer Fcn
Discrete Transfer Fcn implementations, properties, and restrictions for HDL code
generation

Description

The Discrete Transfer Fcn block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Discrete
Transfer Fcn.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Discrete Transfer Fcn

2-113

Restrictions

• You must use the Inherit: Inherit via internal rule option for data type
propagation only if the input data type is double.

• Frame, matrix, and vector input data types are not supported.
• The leading denominator coefficient (a0) must be 1 or -1.

The Discrete Transfer Fcn block is excluded from the following optimizations:

• Resource sharing
• Distributed pipelining

2 Supported Blocks

2-114

Eye Diagram
Eye Diagram implementations, properties, and restrictions for HDL code generation

Description

The Eye Diagram block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Eye
Diagram.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Discrete-Time Integrator

2-115

Discrete-Time Integrator
Discrete-Time Integrator implementations, properties, and restrictions for HDL code
generation

Description
The Discrete-Time Integrator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Discrete-
Time Integrator.

HDL Architecture
This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• State ports are not supported for HDL code generation. Clear the Show state port

option.

2 Supported Blocks

2-116

• External initial conditions are not supported for HDL code generation. Set Initial
condition source to Internal.

• Width of input and output signals must not exceed 32 bits.

 Dilation

2-117

Dilation
Dilation implementations, properties, and restrictions for HDL code generation

Description

The Dilation block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Dilation.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-118

Display
Display implementations, properties, and restrictions for HDL code generation

Description

The Display block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Display.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Divide

2-119

Divide
Divide implementations, properties, and restrictions for HDL code generation

Description

The Divide block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Divide.

HDL Architecture

To perform an HDL-optimized divide operation, connect a Product block to a Divide
block in reciprocal mode. For information about the Divide block in reciprocal mode, see
“Reciprocal Mode” on page 2-119.

Default Mode

In default mode, the Divide block supports only integer data types for HDL code
generation.

Architecture Parameters Description

default

Linear

None Generate a divide (/) operator in
the HDL code.

Reciprocal Mode

When Number of Inputs is set to /, the Divide block is in reciprocal mode.

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

In reciprocal mode, the Divide block has the HDL block implementations described in the
following table.

2 Supported Blocks

2-120

Architectures Parameters Additional
cycles of
latency

Description

default

Linear

None 0 When you compute a
reciprocal, use the HDL
divide (/) operator to
implement the division.

ReciprocalRsqrtBasedNewton Iterations Signed
input:
Iterations

+ 5

Unsigned
input:
Iterations

+ 3

Use the iterative
Newton method. Select
this option to optimize
area.

The default value for
Iterations is 3.

The recommended value
for Iterations is
between 2 and 10. If
Iterations is outside
the recommended range,
HDL Coder displays a
message.

ReciprocalRsqrtBasedNewtonSingleRateIterations Signed
input:
(Iterations
* 4) + 8

Unsigned
input:
(Iterations
* 4) + 6

Use the single rate
pipelined Newton
method. Select this
option to optimize speed,
or if you want a single
rate implementation.

The default value for
Iterations is 3.

The recommended value
for Iterations is
between 2 and 10. If
Iterations is outside
the recommended range,
the coder displays a
message.

 Divide

2-121

The Newton-Raphson iterative method:

x x
f x

f x
x axi i

i

i
i i+

= - = -1
2

1 5 0 5
()

’()
(. .)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate
implement the Newton-Raphson method with:

f x
x

() = -

1
1

2

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block does not support code generation for division with complex signals.

2 Supported Blocks

2-122

Restrictions

When you use the Divide block in reciprocal mode, the following restrictions apply:

• The input must be scalar and must have integer or fixed-point (signed or unsigned)
data type.

• The output must be scalar and have integer or fixed-point (signed or unsigned) data
type.

• Only the Zero rounding mode is supported.
• You must select the Saturate on integer overflow option on the block.

 DocBlock

2-123

DocBlock
DocBlock implementations, properties, and restrictions for HDL code generation

Description

The DocBlock block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
DocBlock.

HDL Architecture

Architecture Description

Annotation (default) Insert text as comment in the generated code.
HDLText Integrate text as custom HDL code.
No HDL Do not generate HDL code for this block.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

TargetLanguage

2 Supported Blocks

2-124

Language of the text, either Verilog or VHDL. The default is VHDL.

When Architecture is HDLText, this property is available. To learn more, see
“Integrate Custom HDL Code Using DocBlock”.

Restrictions

• Document type must be Text.

HDL Coder does not support the HTML or RTF options.
• You can have a maximum of two DocBlock blocks with Architecture set to HDLText

in the same subsystem.

If you have two DocBlock blocks, one must have TargetLanguage set to VHDL, and
the other must have TargetLanguage set to Verilog. When generating code, HDL
Coder only integrates the custom code from the DocBlock that matches the target
language for code generation.

Related Examples
• “Generate Code with Annotations or Comments”
• “Integrate Custom HDL Code Using DocBlock”

 Dot Product

2-125

Dot Product
Dot Product implementations, properties, and restrictions for HDL code generation

Description

The Dot Product block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Dot
Product.

HDL Architecture

Architecture Description

Linear (default) Generates a chain of N operations (multipliers) for
N inputs.

Tree This implementation has minimal latency but is
large and slow. It generates a tree-shaped structure
of multipliers.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-126

Downsample
Downsample implementations, properties, and restrictions for HDL code generation

Description

The Downsample block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Downsample.

Best Practices

It is good practice to follow the Downsample block with a unit delay. Doing so prevents
the code generator from inserting an extra bypass register in the HDL code.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Downsample

2-127

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-128

DSP Constant (Obsolete)
DSP Constant (Obsolete) implementations, properties, and restrictions for HDL code
generation

Description

HDL support for the DSP Constant (Obsolete) block will be removed in a future release.
Use the Constant block instead.

 Dual Port RAM

2-129

Dual Port RAM
Dual Port RAM implementations, properties, and restrictions for HDL code generation

Description

The Dual Port RAM block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Dual
Port RAM.

HDL Architecture

This block has a single default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization

Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable

The HDL block property, RAMArchitecture , enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

• WithClockEnable (default): Generates RAMs using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

2 Supported Blocks

2-130

• WithoutClockEnable: Generates RAMs without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAMs with a clock enable. If your synthesis tool does
not support RAM structures with a clock enable, and cannot map your generated HDL
code to FPGA RAM resources, set RAMArchitecture to 'WithoutClockEnable'.
To learn how to generate RAMs without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations

If you use RAM blocks to perform concurrent read and write operations, verify the
read-during-write behavior in hardware. The read-during-write behavior of the RAM
blocks in Simulink matches that of the generated behavioral HDL code. However, if a
synthesis tool does not follow the same behavior during RAM inference, it causes the
read-during-write behavior in hardware to differ from the behavior of the Simulink
model or generated HDL code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 2-129.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Dual Port RAM

2-131

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-132

Dual Rate Dual Port RAM

Dual Rate Dual Port RAM implementations, properties, and restrictions for HDL code
generation

Description

The Dual Rate Dual Port RAM block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Dual
Rate Dual Port RAM.

HDL Architecture

This block has a single default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization

Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable

The HDL block property, RAMArchitecture , enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

 Dual Rate Dual Port RAM

2-133

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code
to FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

RAM Inference Limitations

If you use RAM blocks to perform concurrent read and write operations, verify the
read-during-write behavior in hardware. The read-during-write behavior of the RAM
blocks in Simulink matches that of the generated behavioral HDL code. However, if a
synthesis tool does not follow the same behavior during RAM inference, it causes the
read-during-write behavior in hardware to differ from the behavior of the Simulink
model or generated HDL code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 2-132.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline

2 Supported Blocks

2-134

Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Edge Detector

2-135

Edge Detector
Edge Detector implementations, properties, and restrictions for HDL code generation

Description

The Edge Detector block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Edge
Detector.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-136

Enable
Enable implementations, properties, and restrictions for HDL code generation

Description

The Enable block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Enable.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

See Also
Enabled Subsystem

 Enabled Subsystem

2-137

Enabled Subsystem

Enabled Subsystem implementations, properties, and restrictions for HDL code
generation

Description

An enabled subsystem is a subsystem that receives a control signal via an Enable block.
The enabled subsystem executes at each simulation step where the control signal has a
positive value.

For detailed information on how to construct and configure enabled subsystems, see
“Create an Enabled Subsystem” in the Simulink documentation.

Best Practices

When using enabled subsystems in models targeted for HDL code generation, it is good
practice to consider the following:

• For synthesis results to match Simulink results, the Enable port must be driven by
registered logic (with a synchronous clock) on the FPGA.

• Put unit delays on Enabled Subsystem output signals. Doing so prevents the code
generator from inserting extra bypass registers in the HDL code.

• Enabled subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of enabled

subsystem instances and the number of output ports per subsystem.

HDL Architecture

Architecture Description

Module (default) Generate code for the subsystem and the blocks within the subsystem.

2 Supported Blocks

2-138

Architecture Description

BlackBox Generate a black-box interface. That is, the generated HDL code
includes only the input/output port definitions for the subsystem. In this
way, you can use a subsystem in your model to generate an interface to
existing, manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

HDL Block Properties

General

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 Enabled Subsystem

2-139

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

Target Specification

This block cannot be the DUT, so the block property settings in the Target
Specification tab are ignored.

Restrictions

HDL Coder supports HDL code generation for enabled subsystems that meet the
following conditions:

• The enabled subsystem is not the DUT.
• The enabled subsystem does not contain a bus.
• The subsystem is not both triggered and enabled.
• The enable signal is a scalar.
• The data type of the enable signal is either boolean or ufix1.
• Outputs of the enabled subsystem have an initial value of 0.
• All inputs and outputs of the enabled subsystem (including the enable signal) run at

the same rate.
• The Show output port parameter of the Enable block is set to Off.
• The States when enabling parameter of the Enable block is set to held (i.e., the

Enable block does not reset states when enabled).
• The Output when disabled parameter for the enabled subsystem output ports is set

to held (i.e., the enabled subsystem does not reset output values when disabled).

2 Supported Blocks

2-140

• If the DUT contains the following blocks, RAMArchitecture is set to
WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The enabled subsystem does not contain the following blocks:

• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample
• HDL Cosimulation blocks for HDL Verifier™
• Rate Transition
• Vision HDL Toolbox blocks

Example

The Automatic Gain Controller example shows how you can use enabled subsystems in
HDL code generation. To open the example, enter:

hdlcoder_agc

See Also
Enable | Subsystem

 Enumerated Constant

2-141

Enumerated Constant
Enumerated Constant implementations, properties, and restrictions for HDL code
generation

Description

The Enumerated Constant block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Enumerated Constant.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-142

Error Rate Calculation
Error Rate Calculation implementations, properties, and restrictions for HDL code
generation

Description

The Error Rate Calculation block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Error
Rate Calculation.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Erosion

2-143

Erosion
Erosion implementations, properties, and restrictions for HDL code generation

Description

The Erosion block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Erosion.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-144

Extract Bits
Extract Bits implementations, properties, and restrictions for HDL code generation

Description

The Extract Bits block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Extract
Bits.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 FFT HDL Optimized

2-145

FFT HDL Optimized
FFT HDL Optimized implementations, properties, and restrictions for HDL code
generation

Description

The FFT HDL Optimized block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see FFT
HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LUTRegisterResetType
The reset type of the lookup table output register. Select none to synthesize
the lookup table to a ROM when your target is an FPGA. See also
“LUTRegisterResetType”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-146

FIR Decimation

FIR Decimation implementations, properties, and restrictions for HDL code generation

Description

The FIR Decimation block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see FIR
Decimation.

HDL Coder supports Coefficient source options Dialog parameters and Filter
object.

HDL Architecture

Observe the following limitations for FIR Decimation filters:

• HDL Coder supports SerialPartition only for the FIR Direct Form structure.
• Accumulator reuse is not supported.

Distributed Arithmetic Support

Distributed Arithmetic properties DALUTPartition and DARadix are supported for
the following filter structures.

Architecture Supported FIR Structures

default, Distributed Arithmetic
(DA)

Direct form

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

 FIR Decimation

2-147

Filter Structure Pipeline Register Placement Latency (clock cycles)

Direct form One pipeline register is
added between levels of a
tree-based adder, and one is
added after the products.

ceil(log2(NZ)).
NZ is the number of non-zero
coefficients.

Direct form transposed No pipelining is added. 0

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area
by replacing coefficient multipliers with shift and add logic. When you choose a fully
parallel filter implementation, you can set this parameter to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. For more
information, see CoeffMultipliers.

DALUTPartition
Specify Distributed Arithmetic partial-product LUT partitions as a vector of the
sizes of each partition. The sum of all vector elements must be equal to the filter
length. The maximum size for a partition is 12 taps. Set this parameter to a scalar
value equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many Distributed Arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

2 Supported Blocks

2-148

SerialPartition
Specify partitions for partly serial or Cascade-serial filter implementations as a
vector of the lengths of each partition. For a fully serial implementation, set this
parameter to the length of the filter. See also SerialPartition.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• You must set Initial conditions to zero. HDL code generation is not supported for
nonzero initial states.

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the following fixed-point options are not

supported for HDL code generation:

• Slope and Bias scaling

• CoeffMultipliers options are supported only when using a fully parallel
architecture. When you select a serial architecture, the CoeffMultipliers property is
hidden from the HDL Block Properties dialog box.

 FIR Interpolation

2-149

FIR Interpolation
FIR Interpolation implementations, properties, and restrictions for HDL code generation

Description

The FIR Interpolation block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see FIR
Interpolation.

HDL Coder supports Coefficient source options Dialog parameters or Filter object.

HDL Architecture

When you select Fully Serial architecture, the SerialPartition property is set on
the FIR Interpolation Block.

Distributed Arithmetic Support

Distributed Arithmetic properties DALUTPartition and DARadix are supported for
the following filter structures.

Architecture Supported FIR Structures

Distributed Arithmetic (DA) default

AddPipelineRegisters Support

When you use AddPipelineRegisters, registers are placed based on filter structure.
The pipeline register placement determines the latency.

Pipeline Register Placement Latency (clock cycles)

A pipeline register is added between levels
of a tree-based adder.

ceil(log2(PL))-1.

2 Supported Blocks

2-150

Pipeline Register Placement Latency (clock cycles)

PL is polyphase filter length.

HDL Filter Properties
AddPipelineRegisters

Insert a pipeline register between stages of computation in a filter. See also
AddPipelineRegisters.

CoeffMultipliers
Specify the use of canonical signed digit (CSD) optimization to decrease filter area
by replacing coefficient multipliers with shift and add logic. When you choose a fully
parallel filter implementation, you can set this parameter to csd or factored-
csd. The default is multipliers, which retains multipliers in the HDL. For more
information, see CoeffMultipliers.

DALUTPartition
Specify Distributed Arithmetic partial-product LUT partitions as a vector of the
sizes of each partition. The sum of all vector elements must be equal to the filter
length. The maximum size for a partition is 12 taps. Set this parameter to a scalar
value equal to the filter length to generate DA code without LUT partitions. See also
DALUTPartition.

DARadix
Specify how many Distributed Arithmetic bit sums are computed in parallel. A DA
radix of 8 (2^3) generates a DA implementation that computes three sums at a time.
The default value is 2^1, which generates a fully serial DA implementation. See also
DARadix.

MultiplierInputPipeline
Specify the number of pipeline stages to add at filter multiplier inputs. See also
MultiplierInputPipeline.

MultiplierOutputPipeline
Specify the number of pipeline stages to add at filter multiplier outputs. See also
MultiplierOutputPipeline.

SerialPartition
Specify partitions for partly serial or Cascade-serial filter implementations as a
vector of the lengths of each partition. For a fully serial implementation, set this
parameter to the length of the filter. See also SerialPartition.

 FIR Interpolation

2-151

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• You must set Initial conditions to zero. HDL code generation is not supported for
nonzero initial states.

• Vector and frame inputs are not supported for HDL code generation.
• When you select Dialog parameters, the following fixed-point options are not

supported for HDL code generation:

• Coefficients: Slope and Bias scaling
• CoeffMultipliers options are supported only when using a fully parallel

architecture. When you select a serial architecture, the CoeffMultipliers property is
hidden from the HDL Block Properties dialog box.

2 Supported Blocks

2-152

Floating Scope
Floating Scope implementations, properties, and restrictions for HDL code generation

Description

The Floating Scope block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Floating
Scope.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Frame Conversion

2-153

Frame Conversion
Frame Conversion implementations, properties, and restrictions for HDL code generation

Description

The Frame Conversion block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Frame
Conversion.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-154

From
From implementations, properties, and restrictions for HDL code generation

Description

The From block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see From.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Gain

2-155

Gain
Gain implementations, properties, and restrictions for HDL code generation

Description

The Gain block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Gain.

Tunable Parameters

You can use a tunable parameter in a Gain block intended for HDL code generation. For
details, see “Generate DUT Ports For Tunable Parameters”.

HDL Architecture

ConstMultiplierOptimizationDescription

none(Default) By default, HDL Coder does not perform CSD or FCSD
optimizations. Code generated for the Gain block retains
multiplier operations.

csd When you specify this option, the generated code decreases
the area used by the model while maintaining or increasing
clock speed, using canonical signed digit (CSD) techniques. CSD
replaces multiplier operations with add and subtract operations.

CSD minimizes the number of addition operations required for
constant multiplication by representing binary numbers with a
minimum count of nonzero digits.

fcsd This option uses factored CSD (FCSD) techniques, which replace
multiplier operations with shift and add/subtract operations
on certain factors of the operands. These factors are generally
prime but can also be a number close to a power of 2, which
favors area reduction. You can achieve a greater area reduction
with FCSD at the cost of decreasing clock speed.

2 Supported Blocks

2-156

ConstMultiplierOptimizationDescription

auto When you specify this option, the coder chooses between the
CSD or FCSD optimizations. The coder chooses the optimization
that yields the most area-efficient implementation, based on the
number of adders required. When you specify auto, the coder
does not use multipliers, unless conditions are such that CSD or
FCSD optimizations are not possible (for example, if the design
uses floating-point arithmetic).

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Gamma Corrector

2-157

Gamma Corrector
Gamma Corrector implementations, properties, and restrictions for HDL code generation

Description

The Gamma Corrector block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Gamma
Corrector.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-158

General CRC Generator HDL Optimized
General CRC Generator HDL Optimized implementations, properties, and restrictions
for HDL code generation

Description

The General CRC Generator HDL Optimized block is available with Communications
System Toolbox.

For information on the Simulink simulation behavior and block parameters, see General
CRC Generator HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 General CRC Syndrome Detector HDL Optimized

2-159

General CRC Syndrome Detector HDL Optimized
General CRC Syndrome Detector HDL Optimized implementations, properties, and
restrictions for HDL code generation

Description

The General CRC Syndrome Detector HDL Optimized block is available with
Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see General
CRC Syndrome Detector HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-160

General Multiplexed Deinterleaver

General Multiplexed Deinterleaver implementations, properties, and restrictions for
HDL code generation

Description

The General Multiplexed Deinterleaver block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see General
Multiplexed Deinterleaver.

HDL Architecture

The implementation for the General Multiplexed Deinterleaver block is shift register
based. If you want to suppress generation of reset logic, set the implementation
parameter ResetType tonone.

When you set ResetType to none, reset is not applied to the shift registers. When
registers are not fully loaded, mismatches between Simulink and the generated code
occur for some number of samples during the initial phase. To avoid spurious test bench
errors, determine the number of samples required to fully load the shift registers. Set the
Ignore output data checking (number of samples) option accordingly. (If you are
using the command-line interface, you can use the IgnoreDataChecking property for
this purpose.)

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline

 General Multiplexed Deinterleaver

2-161

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

2 Supported Blocks

2-162

General Multiplexed Interleaver

General Multiplexed Interleaver implementations, properties, and restrictions for HDL
code generation

Description

The General Multiplexed Interleaver block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see General
Multiplexed Interleaver.

HDL Architecture

The implementation for the General Multiplexed Interleaver block is shift register based.
If you want to suppress generation of reset logic, set the implementation parameter
ResetType to'none'.

Note that when you set ResetType to'none', reset is not applied to the shift registers.
Mismatches between Simulink and the generated code occur for some number of samples
during the initial phase, when registers are not fully loaded. To avoid spurious test
bench errors, determine the number of samples required to fully load the shift registers.
Then, set the Ignore output data checking (number of samples) option accordingly.
(You can use the IgnoreDataChecking property for this purpose, if you are using the
command-line interface.)

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline

 General Multiplexed Interleaver

2-163

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

2 Supported Blocks

2-164

Goto
Goto implementations, properties, and restrictions for HDL code generation

Description

The Goto block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Goto.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Ground

2-165

Ground
Ground implementations, properties, and restrictions for HDL code generation

Description

The Ground block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Ground.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-166

HDL Cosimulation
HDL Cosimulation implementations, properties, and restrictions for HDL code
generation

Description

The HDL Cosimulation block is available with HDL Verifier.

For information on the Simulink simulation behavior and block parameters, see HDL
Cosimulation.

HDL Coder supports HDL code generation for the following HDL Cosimulation blocks:

• HDL Verifier for use with Mentor Graphics® ModelSim®

• HDL Verifier for use with Cadence Incisive®

Each of the HDL Cosimulation blocks cosimulates a hardware component by applying
input signals to, and reading output signals from, an HDL model that executes under an
HDL simulator.

For information on timing, latency, data typing, frame-based processing, and other
issues when setting up an HDL cosimulation, see the “Define HDL Cosimulation Block
Interface ” section of the HDL Verifier documentation .

You can use an HDL Cosimulation block with HDL Coder to generate an interface to
your manually written or legacy HDL code. When an HDL Cosimulation block is included
in a model, the coder generates a VHDL or Verilog interface, depending on the selected
target language.

When the target language is VHDL, the generated interface includes:

• An entity definition. The entity defines ports (input, output, and clock) corresponding
in name and data type to the ports configured on the HDL Cosimulation block. Clock
enable and reset ports are also declared.

• An RTL architecture including a component declaration, a component configuration
declaring signals corresponding to signals connected to the HDL Cosimulation ports,
and a component instantiation.

• Port assignment statements as required by the model.

 HDL Cosimulation

2-167

When the target language is Verilog, the generated interface includes:

• A module defining ports (input, output, and clock) corresponding in name and
data type to the ports configured on the HDL Cosimulation block. The module also
defines clock enable and reset ports, and wire declarations corresponding to signals
connected to the HDL Cosimulation ports.

• A module instance.
• Port assignment statements as required by the model.

Before initiating code generation, to check he requirements for using the HDL
Cosimulation block for code generation, select Simulation > Update Diagram.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

For implementation parameter descriptions, see “Customize Black Box or HDL
Cosimulation Interface”.

More About
• “Generate a Cosimulation Model”

2 Supported Blocks

2-168

HDL Counter
HDL Counter implementations, properties, and restrictions for HDL code generation

Description

The HDL Counter block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see HDL
Counter.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 HDL Counter

2-169

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-170

HDL FIFO
HDL FIFO implementations, properties, and restrictions for HDL code generation

Description

The HDL FIFO block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see HDL
FIFO.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

 HDL FIFO

2-171

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-172

HDL Minimum Resource FFT
HDL Minimum Resource FFT implementations, properties, and restrictions for HDL
code generation

Description

The HDL Minimum Resource FFT block is available with DSP System Toolbox.

For information on the DSP System Toolbox simulation behavior and block parameters,
see HDL Minimum Resource FFT.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 HDL Reciprocal

2-173

HDL Reciprocal
HDL Reciprocal implementations, properties, and restrictions for HDL code generation

Description

The HDL Reciprocal block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see HDL
Reciprocal.

The Newton-Raphson iterative method:

x x
f x

f x
x x axi i

i

i
i i i+

= - = + -1
2()

’()
()

HDL Reciprocal implements the Newton-Raphson method with:

f x
x

a() = -

1

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

ReciprocalNewton (default) Iterations + 1 Use the iterative Newton
method. Select this option to
optimize area.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2 and

2 Supported Blocks

2-174

Architecture Additional cycles of latency Description

10. If Iterations is outside the
recommended range, HDL Coder
displays a message.

ReciprocalNewtonSingleRate (Iterations * 2) + 1 Use the single rate pipelined
Newton method. Select this
option to optimize speed,
or if you want a single rate
implementation.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2 and
10. If Iterations is outside the
recommended range, the coder
displays a message.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 HDL Streaming FFT

2-175

HDL Streaming FFT
HDL Streaming FFT implementations, properties, and restrictions for HDL code
generation

Description

The HDL Streaming FFT block will be removed in a future release. Use the FFT HDL
Optimized block instead.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-176

Histogram
Histogram implementations, properties, and restrictions for HDL code generation

Description

The Histogram block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Histogram.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Hit Crossing

2-177

Hit Crossing
Hit Crossing implementations, properties, and restrictions for HDL code generation

Description

The Hit Crossing block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Hit
Crossing.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restriction

The Hit crossing direction can only be rising or falling.

2 Supported Blocks

2-178

IFFT HDL Optimized
IFFT HDL Optimized implementations, properties, and restrictions for HDL code
generation

Description

The IFFT HDL Optimized block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see IFFT
HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LUTRegisterResetType
The reset type of the lookup table output register. Select none to synthesize
the lookup table to a ROM when your target is an FPGA. See also
“LUTRegisterResetType”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Image Filter

2-179

Image Filter
Image Filter implementations, properties, and restrictions for HDL code generation

Description

The Image Filter block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Image
Filter.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-180

Image Statistics
Image Statistics implementations, properties, and restrictions for HDL code generation

Description

The Image Statistics block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Image
Statistics.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Increment Real World

2-181

Increment Real World
Increment Real World implementations, properties, and restrictions for HDL code
generation

Description

The Increment Real World block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Increment Real World.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-182

Increment Stored Integer
Increment Stored Integer implementations, properties, and restrictions for HDL code
generation

Description

The Increment Stored Integer block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Increment Stored Integer.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Index Vector

2-183

Index Vector
Index Vector implementations, properties, and restrictions for HDL code generation

Description

The Index Vector block is a Multiport Switch block with Number of data ports set to 1.
For HDL code generation information, see Multiport Switch.

2 Supported Blocks

2-184

Inport

Inport implementations, properties, and restrictions for HDL code generation

Description

The Inport block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Inport.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

General

BidirectionalPort

BidirectionalPort Setting Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with black
box implementation.

• There must also be no logic between the bidirectional
port and the corresponding top-level DUT subsystem
port.

For more information, see “Specify Bidirectional Ports”.
off (default) Do not specify the port as bidirectional.

 Inport

2-185

Target Specification

IOInterface
Target platform interface type for DUT ports, specified as a string. The
IOInterface block property is ignored for Inport and Outport blocks that are not
DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step,
in the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the port.

For example, to view the IOInterface value, if the full path to your DUT port
is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

IOInterfaceMapping
Target platform interface port mapping for DUT ports, specified as a string. The
IOInterfaceMapping block property is ignored for Inport and Outport blocks that
are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step,
in the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to change the
default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property of the port.

For example, to view the IOInterfaceMapping value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

2 Supported Blocks

2-186

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...

 'IOInterfaceMapping')

Related Examples
• “Save Target Hardware Settings in Model”

 Integer-Input RS Encoder HDL Optimized

2-187

Integer-Input RS Encoder HDL Optimized
Integer-Input RS Encoder HDL Optimized implementations, properties, and restrictions
for HDL code generation

Description

The Integer-Input RS Encoder HDL Optimized block is available with Communications
System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Integer-
Input RS Encoder HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-188

Integer-Output RS Decoder HDL Optimized
Integer-Output RS Decoder HDL Optimized implementations, properties, and
restrictions for HDL code generation

Description

The Integer-Output RS Decoder HDL Optimized block is available with Communications
System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Integer-
Output RS Decoder HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 LMS Filter

2-189

LMS Filter
LMS Filter implementations, properties, and restrictions for HDL code generation

Description

The LMS Filter block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see LMS
Filter.

HDL Architecture

By default, the LMS Filter implementation uses a linear sum for the FIR section of the
filter.

The LMS Filter implements a tree summation (which has a shorter critical path) under
the following conditions:

• The LMS Filter is used with real data.
• The word length of the Accumulator W'u data type is at least ceil(log2(filter

length)) bits wider than the word length of the Product W'u data type.
• The Accumulator W'u data type has the same fraction length as the Product W'u data

type.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

2 Supported Blocks

2-190

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

Restrictions

• HDL Coder does not support the Normalized LMS algorithm of the LMS Filter.
• The Reset port supports only Boolean and unsigned inputs.
• The Adapt port supports only Boolean inputs.
• Filter length must be greater than or equal to 2.

 Logical Operator

2-191

Logical Operator
Logical Operator implementations, properties, and restrictions for HDL code generation

Description

The Logical Operator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Logical
Operator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-192

Lookup Table
Lookup Table implementations, properties, and restrictions for HDL code generation

Description

The Lookup Table block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Lookup
Table.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 M-PSK Demodulator Baseband

2-193

M-PSK Demodulator Baseband
M-PSK Demodulator Baseband implementations, properties, and restrictions for HDL
code generation

Description

The M-PSK Demodulator Baseband block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see M-PSK
Demodulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-194

M-PSK Modulator Baseband
M-PSK Modulator Baseband implementations, properties, and restrictions for HDL code
generation

Description

The M-PSK Modulator Baseband block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see M-PSK
Modulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Magnitude-Angle to Complex

2-195

Magnitude-Angle to Complex
Magnitude-Angle to Complex implementations, properties, and restrictions for HDL code
generation

Description

The Magnitude-Angle to Complex block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Magnitude-Angle to Complex.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Block configuration with additional latency Number of additional cycles

Approximation method is CORDIC Number of iterations + 1

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-196

Restrictions

The Magnitude-Angle to Complex block supports HDL code generation when you set
Approximation method to CORDIC.

 Math Function

2-197

Math Function
Math Function implementations, properties, and restrictions for HDL code generation

Description
The Math Function block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Math
Function.

HDL Architecture

conj

Architecture Description

ComplexConjugate Compute complex conjugate. See Math Function in the
Simulink documentation.

hermitian

Architecture Description

Hermitian Compute hermitian. See Math Function in the
Simulink documentation.

reciprocal

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Parameters Additional
cycles of
latency

Description

Math (default)
Reciprocal

None 0 Compute reciprocal
as 1/N, using

2 Supported Blocks

2-198

Architecture Parameters Additional
cycles of
latency

Description

the HDL divide
(/) operator to
implement the
division.

ReciprocalRsqrtBasedNewton Iterations Signed input:
Iterations +
5

Unsigned
input:
Iterations +
3

Use the iterative
Newton method.
Select this option to
optimize area.

The default value for
Iterations is 3.

The recommended
value for
Iterations is
between 2 and 10.
If Iterations
is outside the
recommended
range, HDL
Coder generates a
message.

ReciprocalRsqrtBasedNewtonSingleRate Iterations

 Math Function

2-199

Architecture Parameters Additional
cycles of
latency

Description

Signed input:
(Iterations
* 4) + 8

Unsigned
input:
(Iterations
* 4) + 6

Use the single rate
pipelined Newton
method. Select this
option to optimize
speed, or if you
want a single rate
implementation.

The default value for
Iterations is 3.

The recommended
value for
Iterations is
between 2 and 10.
If Iterations
is outside the
recommended range,
the coder generates
a message.

The Newton-Raphson iterative method:

x x
f x

f x
x axi i

i

i
i i+

= - = -1
2

1 5 0 5
()

’()
(. .)

ReciprocalRsqrtBasedNewton and ReciprocalRsqrtBasedNewtonSingleRate
implement the Newton-Raphson method with:

f x
x

() = -

1
1

2

2 Supported Blocks

2-200

transpose

Architecture Description

Transpose Compute array transpose. See Math Function in the
Simulink documentation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The conj, hermitian, and transpose functions support complex data.

Restrictions

When you use a reciprocal implementation:

• Input must be scalar and must have integer or fixed-point (signed or unsigned) data
type.

• The output must be scalar and have integer or fixed-point (signed or unsigned) data
type.

• Only the Zero rounding mode is supported.

 Math Function

2-201

• The Saturate on integer overflow option on the block must be selected.

2 Supported Blocks

2-202

MATLAB Function
MATLAB Function implementations, properties, and restrictions for HDL code
generation

Description

The MATLAB Function block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
MATLAB Function.

Best Practices

• “Design Guidelines for the MATLAB Function Block”
• “Generate Instantiable Code for Functions”
• “Optimize MATLAB Loops”
• “Pipeline MATLAB Expressions”

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline

 MATLAB Function

2-203

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a string, with spaces separating the
variables.

2 Supported Blocks

2-204

Complex Data Support

This block supports code generation for complex signals.

See also “Complex Data Type Support”.

Restrictions

• If the block contains a System object™, block inputs cannot have non-discrete
(constant or Inf) sample time.

For the MATLAB language subset supported for HDL code generation from a MATLAB
Function block, see:

• “Data Types and Scope”
• “Operators”
• “Control Flow Statements”
• “Persistent Variables”
• “Persistent Array Variables”
• “HDL Code Generation for System Objects”
• “Complex Data Type Support”
• “Fixed-Point Bitwise Functions”
• “Fixed-Point Run-Time Library Functions”

Related Examples
• “Code Generation from a MATLAB Function Block”
• “ MATLAB Function Block Design Patterns for HDL”
• “Distributed Pipeline Insertion for MATLAB Function Blocks”

More About
• “HDL Applications for the MATLAB Function Block”

 MATLAB System

2-205

MATLAB System
MATLAB System implementations, properties, and restrictions for HDL code generation

Description

You can define a System object and use it in a MATLAB System block for HDL code
generation.

The MATLAB System block is available with Simulink.

For information on the Simulink behavior and block parameters, see MATLAB System.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

If you use a predefined System object, the HDL block properties available are the same
as those available for the corresponding block.

By default, the following HDL block properties are available.

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

2 Supported Blocks

2-206

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a string, with spaces separating the
variables.

Restrictions

• The DUT subsystem must be single-rate.
• Inputs cannot have non-discrete (constant or Inf) sample time.

 MATLAB System

2-207

• The following predefined System objects are supported for code generation when you
use them in the MATLAB System block:

• hdl.RAM

• comm.HDLCRCDetector

• comm.HDLCRCGenerator

• comm.HDLRSDecoder

• comm.HDLRSEncoder

• dsp.DCBlocker

• dsp.HDLComplexToMagnitudeAngle

• dsp.HDLFFT

• dsp.HDLIFFT

• dsp.HDLNCO

• If you use a user-defined System object, it must support HDL code generation. For
information about user-defined System objects and requirements for HDL code
generation, see “HDL Code Generation for System Objects”.

Related Examples
• “Generate Code for User-Defined System Objects”

More About
• “HDL Code Generation for System Objects”

2 Supported Blocks

2-208

Matrix Concatenate
Matrix Concatenate implementations, properties, and restrictions for HDL code
generation

Description

The Matrix Concatenate block is the Vector Concatenate block with Mode set to
Multidimensional array. For HDL code generation information, see Vector
Concatenate.

 Matrix Viewer

2-209

Matrix Viewer
Matrix Viewer implementations, properties, and restrictions for HDL code generation

Description

The Matrix Viewer block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Matrix
Viewer.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-210

Maximum

Maximum implementations, properties, and restrictions for HDL code generation

Description

The Maximum block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Maximum.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

default

Tree

0 The Tree implementation is
large and slow but has minimal
latency.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline

 Maximum

2-211

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

2 Supported Blocks

2-212

Median Filter
Median Filter implementations, properties, and restrictions for HDL code generation

Description

The Median Filter block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Median
Filter.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Memory

2-213

Memory

Memory implementations, properties, and restrictions for HDL code generation

Description

The Memory block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Memory.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

2 Supported Blocks

2-214

Complex Data Support

This block supports code generation for complex signals.

 Minimum

2-215

Minimum

Minimum implementations, properties, and restrictions for HDL code generation

Description

The Minimum block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Minimum.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

default

Tree

0 The Tree implementation is
large and slow but has minimal
latency.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline

2 Supported Blocks

2-216

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

 MinMax

2-217

MinMax
MinMax implementations, properties, and restrictions for HDL code generation

Description

The MinMax block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see MinMax.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

default

Tree

0 The Tree implementation is
large and slow but has minimal
latency.

Cascade 1, when block has a single vector
input port.

This implementation is optimized
for latency * area, with medium
speed. See “Cascade Architecture
Best Practices”.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

2 Supported Blocks

2-218

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

InstantiateStages
Generate a VHDL entity or Verilog module for each cascade stage. The default is
off. See also “InstantiateStages”.

SerialPartition
Specify partitions for Cascade-serial implementations as a vector of the lengths of
each partition. The default setting uses the minimum number of stages. See also
“SerialPartition”.

 Model

2-219

Model
Model implementations, properties, and restrictions for HDL code generation

Description

The Model block is available with Simulink. For information on the Simulink simulation
behavior and block parameters, see Model.

If you enter text in the Model Block Properties dialog box Description field, HDL Coder
generates a comment in the HDL code.

HDL Architecture

Architecture Description

ModelReference (default) When you want to generate code from a
referenced model and any nested models, use
the ModelReference implementation. For more
information, see “How To Generate Code for a
Referenced Model”.

BlackBox Use the BlackBox implementation to instantiate
an HDL wrapper, or black box interface, for legacy
or external HDL code. If you specify a black box
interface, HDL Coder does not attempt to generate
HDL code for the referenced model.

For more information, see “Generate Black Box
Interface for Referenced Model”.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of
the external component interface. See “Customize Black Box or HDL Cosimulation
Interface”.

2 Supported Blocks

2-220

HDL Block Properties

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

Restrictions

When you generate HDL code for referenced models, the following limitations apply:

 Model

2-221

• You must set the block parameters for the Model block to their default values.
• If multiple model references refer to the same model, their HDL block properties must

be the same.
• Referenced models cannot be protected models.
• Hierarchical distributed pipelining must be disabled.

HDL Coder cannot move registers across a model reference. Therefore, referenced models
may inhibit the following optimizations:

• Distributed pipelining
• Constrained output pipelining

The coder cannot apply the streaming optimization to a model reference.

The coder can apply the resource sharing optimization to share referenced model
instances. However, you can apply this optimization only when all model references
that point to the same referenced model have the same rate after optimizations and rate
propagation. The model reference final rate may differ from the original rate, but all
model references that point to the same referenced model must have the same final rate.

More About
• “Model Referencing for HDL Code Generation”
• “Generate Black Box Interface for Referenced Model”

2 Supported Blocks

2-222

Model Info
Model Info implementations, properties, and restrictions for HDL code generation

Description

The Model Info block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Model
Info.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Model Variants

2-223

Model Variants
Model Variants implementations, properties, and restrictions for HDL code generation

Description

The Model Variants block is a version of the Model block. For HDL code generation
information, see Model.

2 Supported Blocks

2-224

Multiport Selector
Multiport Selector implementations, properties, and restrictions for HDL code generation

Description

The Multiport Selector block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Multiport Selector.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Multiport Switch

2-225

Multiport Switch
Multiport Switch implementations, properties, and restrictions for HDL code generation

Description

The Multiport Switch block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Multiport Switch.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-226

Example

You can set Data port order to Specify indices, and enter enumeration values for the
Data port indices. For example, you can connect the Enumerated Constant block to the
Multiport Switch control port and use the enumerated types as data port indices.

 Mux

2-227

Mux
Mux implementations, properties, and restrictions for HDL code generation

Description

The Mux block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Mux.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-228

Restrictions

Buses are not supported for HDL code generation.

 n-D Lookup Table

2-229

n-D Lookup Table
n-D Lookup Table implementations, properties, and restrictions for HDL code generation

Description

The n-D Lookup Table block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see n-D
Lookup Table.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-230

Restrictions
• “Required Block Settings” on page 2-230
• “Avoid Generation of Divide Operator” on page 2-230
• “Table Data Typing and Sizing” on page 2-231

Required Block Settings

• Number of table dimensions: HDL Coder supports a maximum dimension of 2.
• Index search method: Select Evenly spaced points.
• Extrapolation method: The coder supports only Clip. The coder does not support

extrapolation beyond the table bounds.
• Interpolation method: The coder supports only Flat or Linear.
• Diagnostic for out-of-range input: Select Error. If you select other options, the

coder displays a warning.
• Use last table value for inputs at or above last breakpoint: Select this check

box.
• Require all inputs to have the same data type: Select this check box.
• Fraction: Select Inherit: Inherit via internal rule.
• Integer rounding mode: Select Zero, Floor, or Simplest.

Avoid Generation of Divide Operator

If HDL Coder encounters conditions under which a division operation is required to
match the model simulation behavior, a warning is displayed. The conditions described
cause this block to emit a divide operator. When you use this block for HDL code
generation, avoid the following conditions:

• If the block is configured to use interpolation, a division operator is required. To avoid
this requirement, set Interpolation method : to Flat.

• Uneven table spacing. HDL code generation requires the block to use the "Evenly
Spaced Points" algorithm. The block mapping from the input data type to the zero-
based table index in general requires a division. When the breakpoint spacing is an
exact power of 2, this divide is implemented as a shift instead of as a divide. To adjust
the breakpoint spacing, you can adjust the number of breakpoints in the table r the
difference between the left and right bounds of the breakpoint range.

 n-D Lookup Table

2-231

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between breakpoints
is a power of two. If the breakpoint spacing does not meet this condition, HDL Coder
issues a warning. When the breakpoint spacing is a power of two, you can replace
division operations in the prelookup step with right-shift operations.

• Table data must resolve to a nonfloating-point data type.
• All ports on the block require scalar values.

2 Supported Blocks

2-232

NCO
NCO implementations, properties, and restrictions for HDL code generation

Description

HDL support for the NCO block will be removed in a future release. Use the NCO HDL
Optimized block instead.

 NCO HDL Optimized

2-233

NCO HDL Optimized
NCO HDL Optimized implementations, properties, and restrictions for HDL code
generation

Description

The NCO HDL Optimized block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see NCO
HDL Optimized.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

LUTRegisterResetType
The reset type of the lookup table output register. Select none to synthesize
the lookup table to a ROM when your target is an FPGA. See also
“LUTRegisterResetType”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-234

Restrictions

• When you set Dither source to Property , the block adds random dither every
cycle. If you generate a validation model with these settings, a warning is displayed
because the random generation of the internal dither can cause mismatches between
the models. You can increase the error margin for the validation comparison to
account for the difference. You can also disable dither or set Dither source to Input
port to avoid this issue.

 Opening

2-235

Opening
Opening implementations, properties, and restrictions for HDL code generation

Description

The Opening block is available with Vision HDL Toolbox.

For information on the Simulink simulation behavior and block parameters, see Opening.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-236

Outport

Outport implementations, properties, and restrictions for HDL code generation

Description

The Outport block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Outport.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

General

BidirectionalPort

BidirectionalPort Setting Description

on Specify the port as bidirectional.

The following requirements apply:

• The port must be in a Subsystem block with black
box implementation.

• There must also be no logic between the bidirectional
port and the corresponding top-level DUT subsystem
port.

For more information, see “Specify Bidirectional Ports”.
off (default) Do not specify the port as bidirectional.

 Outport

2-237

Target Specification

IOInterface
Target platform interface type for DUT ports, specified as a string. The
IOInterface block property is ignored for Inport and Outport blocks that are not
DUT ports.

To specify valid IOInterface settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step,
in the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 Save the model.

The IOInterface value is saved as an HDL block property of the port.

For example, to view the IOInterface value, if the full path to your DUT port
is hdlcoder_led_blinking/led_counter/LED, enter:

hdlget_param('hdlcoder_led_blinking/led_counter/LED', 'IOInterface')

IOInterfaceMapping
Target platform interface port mapping for DUT ports, specified as a string. The
IOInterfaceMapping block property is ignored for Inport and Outport blocks that
are not DUT ports.

To specify valid IOInterfaceMapping settings, use the HDL Workflow Advisor:

1 In the HDL Workflow Advisor, in the Set Target > Set Target Interface step,
in the Target platform interface table, in the Target Platform Interfaces
column, use the drop-down list to set the target platform interface type.

2 In the Bit Range / Address / FPGA Pin column, if you want to change the
default value, enter a target platform interface mapping.

3 Save the model.

The IOInterfaceMapping value is saved as an HDL block property of the port.

For example, to view the IOInterfaceMapping value, if the full path to your
DUT port is hdlcoder_led_blinking/led_counter/LED, enter:

2 Supported Blocks

2-238

hdlget_param('hdlcoder_led_blinking/led_counter/LED',...

 'IOInterfaceMapping')

Related Examples
• “Save Target Hardware Settings in Model”

 PN Sequence Generator

2-239

PN Sequence Generator
PN Sequence Generator implementations, properties, and restrictions for HDL code
generation

Description

The PN Sequence Generator block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see PN
Sequence Generator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

Inputs:

2 Supported Blocks

2-240

• You can select Input port as the Output mask source on the block. However, in
this case, the Mask input signal must be a vector of data type ufix1.

• If you select Reset on nonzero input, the input to the Rst port must have data type
Boolean.

Outputs:

• Outputs of type double are not supported for HDL code generation. All other output
types (including bit packed outputs) are supported.

 Prelookup

2-241

Prelookup
Prelookup implementations, properties, and restrictions for HDL code generation

Description

The Prelookup block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Prelookup.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• “Required Block Settings” on page 2-242

2 Supported Blocks

2-242

• “Table Data Typing and Sizing” on page 2-242

Required Block Settings

• Breakpoint data: For Source, select Dialog.
• Index search method: Select Evenly spaced points.
• Extrapolation method: Select Clip.
• Diagnostic for out-of-range input: Select Error.
• Use last breakpoint for input at or above upper limit: Select this check box.
• Breakpoint: For Data Type, select Inherit: Same as input.
• Integer rounding mode: Select Zero, Floor, or Simplest.

Table Data Typing and Sizing

• It is good practice to structure your table such that the spacing between breakpoints
is a power of two. If the breakpoint spacing does not meet this condition, HDL Coder
issues a warning. When the breakpoint spacing is a power of two, you can replace
division operations in the prelookup step with right-shift operations.

• All ports on the block require scalar values.
• The coder permits floating-point data for breakpoints.

 Product

2-243

Product
Product implementations, properties, and restrictions for HDL code generation

Description

The Product block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Product.

Divide or Reciprocal

For block implementations of the Product block in divide mode or reciprocal mode, see
Divide.

Note: In divide mode, Number of Inputs is set to */.

In reciprocal mode, Number of Inputs is set to /.

HDL Architecture

The default Linear implementation generates a chain of N operations (multipliers) for N
inputs.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

InputPipeline

2 Supported Blocks

2-244

Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default (linear) implementation supports complex data.

Complex division is not supported. For block implementations of the Product block in
divide mode or reciprocal mode, see Divide.

 Product of Elements

2-245

Product of Elements
Product of Elements implementations, properties, and restrictions for HDL code
generation

Description

The Product of Elements block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Product
of Elements.

HDL Architecture

HDL Coder supports Tree and Cascade architectures for Product or Product of
Elements blocks that have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

Linear (default) 0 Generates a chain of N operations
(multipliers) for N inputs.

Tree 0 This implementation has
minimal latency but is large and
slow. It generates a tree-shaped
structure of multipliers.

Cascade 1, when block has a single vector
input port.

This implementation optimizes
latency * area and is faster than
the Tree implementation. It
computes partial products and
cascades multipliers.

See “Cascade Architecture Best
Practices”.

2 Supported Blocks

2-246

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default (linear) implementation supports complex data.

Complex division is not supported. For block implementations of the Product block in
divide mode or reciprocal mode, see Divide.

 QPSK Demodulator Baseband

2-247

QPSK Demodulator Baseband
QPSK Demodulator Baseband implementations, properties, and restrictions for HDL
code generation

Description

The QPSK Demodulator Baseband block is available with Communications System
Toolbox.

For information on the Simulink simulation behavior and block parameters, see QPSK
Demodulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-248

QPSK Modulator Baseband
QPSK Modulator Baseband implementations, properties, and restrictions for HDL code
generation

Description

The QPSK Modulator Baseband block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see QPSK
Modulator Baseband.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Raised Cosine Receive Filter

2-249

Raised Cosine Receive Filter
Raised Cosine Receive Filter implementations, properties, and restrictions for HDL code
generation

Description

The Raised Cosine Receive Filter is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Raised
Cosine Receive Filter.

This block is a subsystem that contains a FIR Interpolation block. You can look under the
mask and set HDL Properties on the filter block. See FIR Interpolation.

2 Supported Blocks

2-250

Raised Cosine Transmit Filter
Raised Cosine Transmit Filter implementations, properties, and restrictions for HDL
code generation

Description

The Raised Cosine Transmit Filter is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Raised
Cosine Transmit Filter.

This block is a subsystem that contains a FIR Decimation block. You can look under the
mask and set HDL Properties on the filter block. See FIR Decimation.

 Rate Transition

2-251

Rate Transition
Rate Transition implementations, properties, and restrictions for HDL code generation

Description

The Rate Transition block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Rate
Transition.

Best Practices

It is good practice to follow the Rate Transition block with a unit delay. Doing so prevents
the code generator from inserting an extra bypass register in the HDL code.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-252

Complex Data Support

This block supports code generation for complex signals.

 Real-Imag to Complex

2-253

Real-Imag to Complex
Real-Imag to Complex implementations, properties, and restrictions for HDL code
generation

Description

The Real-Imag to Complex block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Real-
Imag to Complex.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-254

Reciprocal Sqrt
Reciprocal Sqrt implementations, properties, and restrictions for HDL code generation

Description

The Reciprocal Sqrt block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Reciprocal Sqrt.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

SqrtFunction (default)
RecipSqrtNewton

Iterations + 2 Use the iterative Newton
method. Select this option
to optimize area.

RecipSqrtNewtonSingleRate (Iterations * 4) + 5 Use the single rate
pipelined Newton
method. Select this option
to optimize speed, or if
you want a single rate
implementation.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

 Reciprocal Sqrt

2-255

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

Iterations
Number of iterations for Newton method. The default is 3.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

• In the Block Parameters dialog box, in the Algorithm tab, for Method, you must
select Newton-Raphson.

• Input must be an unsigned scalar value.
• Output is a fixed-point scalar value.

2 Supported Blocks

2-256

Rectangular QAM Demodulator Baseband
Rectangular QAM Demodulator Baseband implementations, properties, and restrictions
for HDL code generation

Description
The Rectangular QAM Demodulator Baseband block is available with Communications
System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Rectangular QAM Demodulator Baseband.

HDL Architecture
This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• The block does not support single or double data types for HDL code generation.

 Rectangular QAM Demodulator Baseband

2-257

• HDL Coder supports the following Output type options:

• Integer

• Bit is supported only if the Decision Type that you select is Hard decision.
• The coder requires that you set Normalization Method to Minimum Distance

Between Symbols, with a Minimum distance of 2.
• The coder requires that you set Phase offset (rad) to a value that is multiple a of

pi/4.

2 Supported Blocks

2-258

Rectangular QAM Modulator Baseband
Rectangular QAM Modulator Baseband implementations, properties, and restrictions for
HDL code generation

Description
The Rectangular QAM Modulator Baseband block is available with Communications
System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Rectangular QAM Modulator Baseband.

HDL Architecture
This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions
• The block does not support single or double data types for HDL code generation.

 Rectangular QAM Modulator Baseband

2-259

• When Input Type is set to Bit, the block does not support HDL code generation for
input types other than boolean or ufix1.

When the input type is set to Bit, but the block input is actually multibit (uint16, for
example), the Rectangular QAM Modulator Baseband block does not support HDL code
generation.

2 Supported Blocks

2-260

Relational Operator
Relational Operator implementations, properties, and restrictions for HDL code
generation

Description

The Relational Operator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Relational Operator.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The ~= and == operators are supported for code generation.

 Relay

2-261

Relay
Relay implementations, properties, and restrictions for HDL code generation

Description

The Relay block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Relay.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-262

Repeat
Repeat implementations, properties, and restrictions for HDL code generation

Description

The Repeat block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Repeat.

Best Practices

The Repeat block uses fewer hardware resources than the Upsample block. If your
algorithm does not require zero-padding upsampling, use the Repeat block.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Reshape

2-263

Reshape
Reshape implementations, properties, and restrictions for HDL code generation

Description

The Reshape block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Reshape.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-264

Sample and Hold

Sample and Hold implementations, properties, and restrictions for HDL code generation

Description

The Sample and Hold block is available with DSP System Toolbox.

For information on the DSP System Toolbox simulation behavior and block parameters,
see Sample and Hold.

HDL code for the Sample and Hold block is generated as a Triggered SubsystemSimilar
restrictions apply to both blocks.

HDL Block Properties

For HDL block property descriptions, see “HDL Block Properties”.

Best Practices

When using the Sample and Hold block in models targeted for HDL code generation,
consider the following:

• For synthesis results to match Simulink results, the trigger port must be driven by
registered logic (with a synchronous clock) on the FPGA.

• It is good practice to put a unit delay on the output signal. Doing so prevents the code
generator from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems, such as the Sample and Hold block, can affect
synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered

subsystem instances.

 Sample and Hold

2-265

Restrictions

The Sample and Hold block must meet the following conditions:

• The DUT (i.e., the top-level subsystem for which code is generated) must not be the
Sample and Hold block.

• The trigger signal must be a scalar.
• The data type of the trigger signal must be either boolean or ufix1.
• The output of the Sample and Hold block must have an initial value of 0.
• The input, output, and trigger signal of the Sample and Hold block must run at the

same rate. If one of the input or the trigger signals is an output of a Signal Builder
block, see “Using the Signal Builder Block” on page 2-311 for how to match rates.

2 Supported Blocks

2-266

Saturation
Saturation implementations, properties, and restrictions for HDL code generation

Description

The Saturation block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Saturation.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Saturation Dynamic

2-267

Saturation Dynamic
Saturation Dynamic implementations, properties, and restrictions for HDL code
generation

Description

The Saturation Dynamic block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Saturation Dynamic.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-268

Scope
Scope implementations, properties, and restrictions for HDL code generation

Description

The Scope block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Scope.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Selector

2-269

Selector
Selector implementations, properties, and restrictions for HDL code generation

Description

The Selector block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Selector.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-270

Serializer1D
Serializer1D implementations, properties, and restrictions for HDL code generation

Description

The Serializer1D block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Serializer1D.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

 Shift Arithmetic

2-271

Shift Arithmetic
Shift Arithmetic implementations, properties, and restrictions for HDL code generation

Description

The Shift Arithmetic block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Shift
Arithmetic.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-272

Restrictions

In the Function Block Parameters dialog box, for Bits to shift, you must set Source to
Dialog. The Input port option is not supported for HDL code generation.

 Sign

2-273

Sign
Sign implementations, properties, and restrictions for HDL code generation

Description

The Sign block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sign.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-274

Signal Conversion
Signal Conversion implementations, properties, and restrictions for HDL code generation

Description

The Signal Conversion block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Signal
Conversion.

HDL Architecture

This block has a pass-through implementation.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Signal Specification

2-275

Signal Specification
Signal Specification implementations, properties, and restrictions for HDL code
generation

Description

The Signal Specification block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Signal
Specification.

HDL Architecture

This block has a pass-through implementation.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-276

Simple Dual Port RAM

Simple Dual Port RAM implementations, properties, and restrictions for HDL code
generation

Description

The Simple Dual Port RAM block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Simple
Dual Port RAM.

HDL Architecture

This block has a single default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language file name extension.

RAM Initialization

Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable

The HDL block property, RAMArchitecture , enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

 Simple Dual Port RAM

2-277

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code
to FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

To learn how to generate RAM without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations

If you use RAM blocks to perform concurrent read and write operations, verify the
read-during-write behavior in hardware. The read-during-write behavior of the RAM
blocks in Simulink matches that of the generated behavioral HDL code. However, if a
synthesis tool does not follow the same behavior during RAM inference, it causes the
read-during-write behavior in hardware to differ from the behavior of the Simulink
model or generated HDL code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 2-276.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

2 Supported Blocks

2-278

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Sine

2-279

Sine

Sine implementations, properties, and restrictions for HDL code generation

Description

The Sine block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sine,
Cosine.

HDL Architecture

The HDL code implements Sine using the quarter-wave lookup table you specify in the
Simulink block parameters.

To avoid generating a division operator (/) in the HDL code, for Number of data points
for lookup table, enter (2^n)+1. n is an integer.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-280

Restrictions

This block does not have restrictions for HDL code generation.

If you see the following warnings for the Sine or Cosine block, you can ignore them.

• HDL code generation for the Lookup Table (n-D) block does not

support out-of-range inputs. Set the "Diagnostic for out of range

input" block parameter to "Error" to suppress this warning.

• Using linear interpolation on the Lookup Table (n-D) block, may

require using a divide operator in the generated HDL, which may

not be synthesizable.

 Sine Wave

2-281

Sine Wave
Sine Wave implementations, properties, and restrictions for HDL code generation

Description

The Sine Wave block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Sine
Wave.

HDL Architecture

This block has a single default HDL architecture.

Restrictions

For HDL code generation, you must select the following Sine Wave block settings:

• Computation method: Table lookup
• Sample mode: Discrete

Output:

• The output port cannot have data types single or double.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-282

Single Port RAM
Single Port RAM implementations, properties, and restrictions for HDL code generation

Description

The Single Port RAM block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Single
Port RAM.

HDL Architecture

This block has a single default HDL architecture.

HDL code generated for RAM blocks has:

• A latency of one clock cycle for read data output.
• No reset signal, because some synthesis tools do not infer a RAM from HDL code if it

includes a reset.

Code generation for a RAM block creates a separate file, blockname.ext. blockname is
derived from the name of the RAM block. ext is the target language filename extension.

RAM Initialization

Code generated to initialize a RAM is intended for simulation only. Synthesis tools can
ignore this code.

Implement RAM With or Without Clock Enable

The HDL block property, RAMArchitecture , enables or suppresses generation of clock
enable logic for all RAM blocks in a subsystem. You can set RAMArchitecture to the
following values:

• WithClockEnable (default): Generates RAM using HDL templates that include a
clock enable signal, and an empty RAM wrapper.

 Single Port RAM

2-283

• WithoutClockEnable: Generates RAM without clock enables, and a RAM wrapper
that implements the clock enable logic.

Some synthesis tools do not infer RAM with a clock enable. If your synthesis tool does not
support RAM structures with a clock enable, and cannot map your generated HDL code
to FPGA RAM resources, set RAMArchitecture to WithoutClockEnable.

To learn how to generate RAM without clock enables for your design, see the Getting
Started with RAM and ROM example. To open the example, at the command prompt,
enter:

hdlcoderramrom

RAM Inference Limitations

Depending on your synthesis tool and target device, the setting of Output data during
write can affect RAM inference.

If you use RAM blocks to perform concurrent read and write operations, verify the
read-during-write behavior in hardware. The read-during-write behavior of the RAM
blocks in Simulink matches that of the generated behavioral HDL code. However, if a
synthesis tool does not follow the same behavior during RAM inference, it causes the
read-during-write behavior in hardware to differ from the behavior of the Simulink
model or generated HDL code.

Your synthesis tool might not map the generated code to RAM for the following reasons:

• Small RAM size: your synthesis tool uses registers to implement a small RAM for
better performance.

• A clock enable signal is present. You can suppress generation of a clock enable signal
in RAM blocks, as described in “Implement RAM With or Without Clock Enable” on
page 2-282.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

2 Supported Blocks

2-284

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Spectrum Analyzer

2-285

Spectrum Analyzer
Spectrum Analyzer implementations, properties, and restrictions for HDL code
generation

Description

The Spectrum Analyzer block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Spectrum Analyzer.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-286

Sqrt
Sqrt implementations, properties, and restrictions for HDL code generation

Description

The Sqrt block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sqrt.

HDL Architecture

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Parameter Additional cycles
of latency

Description

SqrtFunction (default) None 0 Use a bitset shift/addition
algorithm.

The SqrtFunction
architecture is equivalent to
the SqrtBitset architecture
with UseMultiplier set to
off.

SqrtBitset UseMultiplier 0 Algorithm depends on the
UseMultiplier setting:

• off (default): Use a bitset
shift/addition algorithm.

• on: Use a multiply/add
algorithm.

SqrtNewton Iterations Iterations +
3

Use the iterative Newton
method. Select this option to
optimize area.

 Sqrt

2-287

Architecture Parameter Additional cycles
of latency

Description

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, HDL Coder generates
a message.

SqrtNewtonSingleRate Iterations (Iterations *
4) + 6

Use the single rate pipelined
Newton method. Select this
option to optimize speed,
or if you want a single rate
implementation.

The default value for
Iterations is 3.

The recommended value for
Iterations is between 2
and 10. If Iterations is
outside the recommended
range, the coder generates a
message.

SqrtTargetLibrary None 0 Use the Altera or Xilinx
target library.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

Iterations
Number of iterations for SqrtNewton or SqrtNewtonSingleRate implementation.

2 Supported Blocks

2-288

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

UseMultiplier
Select algorithm for SqrtBitset implementation. The default is off.

Restrictions

• Input must be an unsigned scalar value.
• Output is a fixed-point scalar value.

 State Control

2-289

State Control
State Control implementations, properties, and restrictions for HDL code generation

Description

PLACEHOLDER.

The State Control block is available with Simulink.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

2 Supported Blocks

2-290

State Transition Table
State Transition Table implementations, properties, and restrictions for HDL code
generation

Description

The State Transition Table block is available with Stateflow.

For information on the Simulink simulation behavior and block parameters, see State
Transition Table.

HDL Architecture

This block has a single default HDL architecture.

Active State Output

To generate an output port in the HDL code that shows the active state, select Create
output port for monitoring in the Properties window of the chart. The output is an
enumerated data type. See “Use Active State Output”.

HDL Block Properties

ConstMultiplierOptimization
Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

 State Transition Table

2-291

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a string, with spaces separating the
variables.

2 Supported Blocks

2-292

See Also
Chart | Truth Table

 Stop Simulation

2-293

Stop Simulation
Stop Simulation implementations, properties, and restrictions for HDL code generation

Description

The Stop Simulation block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Stop
Simulation.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-294

Subsystem

Subsystem implementations, properties, and restrictions for HDL code generation

Description

The Subsystem block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Subsystem.

HDL Architecture

Architecture Description

Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black-box interface. That is, the generated HDL code

includes only the input/output port definitions for the subsystem. In this
way, you can use a subsystem in your model to generate an interface to
existing, manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of
the external component interface. See “Customize Black Box or HDL Cosimulation
Interface”.

 Subsystem

2-295

HDL Block Properties

General

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-296

Target Specification

If this block is not the DUT, the block property settings in the Target Specification tab
are ignored.

In the HDL Workflow Advisor, if you use the IP Core Generation workflow, these target
specification block property values are saved with the model. If you specify these target
specification block property values using hdlset_param, when you open HDL Workflow
Advisor, the values are loaded in the corresponding fields.

ProcessorFPGASynchronization
Processor / FPGA synchronization mode, specified as a string.

In the HDL Workflow Advisor, you can set this property in the Processor/FPGA
Synchronization field.

Values: Free running (default) | Coprocessing - blocking

Example: 'Free running'
IPCoreAdditionalFiles

Verilog or VHDL files for black boxes in your design. Specify the full path to each file,
and separate file names with a semicolon (;).

In the HDL Workflow Advisor, you can set this property in the Additional source
files field.

Values: '' (default) | string

Example: 'C:\myprojfiles\led_blinking_file1.vhd;C:\myprojfiles
\led_blinking_file2.vhd;'

IPCoreName
IP core name, specified as a string.

In the HDL Workflow Advisor, you can set this property using the IP core name
field. If this property is set to the default value, the HDL Workflow Advisor
constructs the IP core name based on the name of the DUT.

Values: '' (default) | string

Example: 'my_model_name'

 Subsystem

2-297

IPCoreVersion
IP core version number, specified as a string.

In the HDL Workflow Advisor, you can set this property using the IP core version
field. If this property is set to the default value, the HDL Workflow Advisor sets the
IP core version.

Values: '' (default) | string

Example: '1.3'

More About
• “External Component Interfaces”
• “Generate Black Box Interface for Subsystem”

2 Supported Blocks

2-298

Subtract
Subtract implementations, properties, and restrictions for HDL code generation

Description

The Subtract block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Subtract.

HDL Architecture

The default Linear implementation generates a chain of N operations (adders) for N
inputs.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default Linear implementation supports complex data.

 Sum

2-299

Sum
Sum implementations, properties, and restrictions for HDL code generation

Description

The Sum block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sum.

HDL Architecture

The default Linear implementation generates a chain of N operations (adders) for N
inputs.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default Linear implementation supports complex data.

2 Supported Blocks

2-300

Sum of Elements

Sum of Elements implementations, properties, and restrictions for HDL code generation

Description

The Sum of Elements block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Sum of
Elements.

HDL Architecture

HDL Coder supports Tree and Cascade architectures for Sum of Elements blocks that
have a single vector input with multiple elements.

This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

Architecture Additional cycles of latency Description

default

Linear

0 Generates a chain of N operations
(adders) for N inputs.

Tree 0 This implementation has minimal
latency but is large and slow.
Generates a tree-shaped structure of
adders.

Cascade 1, when block has a single
vector input port.

This implementation optimizes latency
* area and is faster than the Tree
implementation. It computes partial
sums and cascades adders.

See “Cascade Architecture Best
Practices”.

 Sum of Elements

2-301

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

The default Linear implementation supports complex data.

2 Supported Blocks

2-302

Switch
Switch implementations, properties, and restrictions for HDL code generation

Description

The Switch block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Switch.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Tapped Delay

2-303

Tapped Delay

Tapped Delay implementations, properties, and restrictions for HDL code generation

Description

The Tapped Delay block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Tapped
Delay.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

2 Supported Blocks

2-304

Complex Data Support

This block supports code generation for complex signals.

 Terminator

2-305

Terminator
Terminator implementations, properties, and restrictions for HDL code generation

Description

The Terminator block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Terminator.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-306

Time Scope
Time Scope implementations, properties, and restrictions for HDL code generation

Description

The Time Scope block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Time
Scope.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 To File

2-307

To File
To File implementations, properties, and restrictions for HDL code generation

Description

The To File block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see To File.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-308

To VCD File
To VCD File implementations, properties, and restrictions for HDL code generation

Description

The To VCD File block is available with HDL Verifier.

For information on the Simulink simulation behavior and block parameters, see To VCD
File.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 To Workspace

2-309

To Workspace
To Workspace implementations, properties, and restrictions for HDL code generation

Description

The To Workspace block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see To
Workspace.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

2 Supported Blocks

2-310

Trigger
Trigger implementations, properties, and restrictions for HDL code generation

Description

The Trigger block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Trigger.

HDL Architecture

This block has a single default HDL architecture.

See Also
Triggered Subsystem

 Triggered Subsystem

2-311

Triggered Subsystem
Triggered Subsystem implementations, properties, and restrictions for HDL code
generation

Description

A triggered subsystem is a subsystem that receives a control signal via a Trigger block.
The triggered subsystem executes for one cycle each time a trigger event occurs. For
detailed information on how to define trigger events and configure triggered subsystems,
see “Create a Triggered Subsystem” in the Simulink documentation.

Best Practices

When using triggered subsystems in models targeted for HDL code generation, consider
the following:

• For synthesis results to match Simulink results, the trigger port must be driven by
registered logic (with a synchronous clock) on the FPGA.

• It is good practice to put unit delays on Triggered Subsystem output signals. Doing so
prevents the code generator from inserting extra bypass registers in the HDL code.

• The use of triggered subsystems can affect synthesis results in the following ways:

• In some cases, the system clock speed can drop by a small percentage.
• Generated code uses more resources, scaling with the number of triggered

subsystem instances and the number of output ports per subsystem.

Using the Signal Builder Block

When you connect outputs from a Signal Builder block to a triggered subsystem, you
might need to use a Rate Transition block. To run all triggered subsystem ports at the
same rate:

• If the trigger source is a Signal Builder block, but the other triggered subsystem
inputs come from other sources, insert a Rate Transition block into the signal path
before the trigger input.

2 Supported Blocks

2-312

• If all inputs (including the trigger) come from a Signal Builder block, they have the
same rate, so special action is not required.

Using the Trigger as Clock

You can generate code that uses the trigger signal as a clock with the TriggerAsClock
property. See “Use Trigger As Clock in Triggered Subsystems”.

HDL Architecture

Architecture Description

Module (default) Generate code for the subsystem and the blocks within the subsystem.
BlackBox Generate a black-box interface. That is, the generated HDL code

includes only the input/output port definitions for the subsystem. In this
way, you can use a subsystem in your model to generate an interface to
existing, manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation, however, treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of
the external component interface. See “Customize Black Box or HDL Cosimulation
Interface”.

HDL Block Properties

General

BalanceDelays

 Triggered Subsystem

2-313

Delay balancing. The default is inherit. See also “BalanceDelays”.
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

Target Specification

This block cannot be the DUT, so the block property settings in the Target
Specification tab are ignored.

2 Supported Blocks

2-314

Restrictions

HDL Coder supports HDL code generation for triggered subsystems that meet the
following conditions:

• The triggered subsystem is not the DUT.
• The triggered subsystem does not contain a bus.
• The subsystem is not both triggered and enabled.
• The trigger signal is a scalar.
• The data type of the trigger signal is either boolean or ufix1.
• Outputs of the triggered subsystem have an initial value of 0.
• All inputs and outputs of the triggered subsystem (including the trigger signal) run at

the same rate. (See “Using the Signal Builder Block” on page 2-311 for information
on a special case.)

• The Show output port parameter of the Trigger block is set to Off.
• If the DUT contains the following blocks, RAMArchitecture is set to

WithClockEnable:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM

• The triggered subsystem does not contain the following blocks:

• Discrete-Time Integrator
• CIC Decimation
• CIC Interpolation
• FIR Decimation
• FIR Interpolation
• Downsample
• Upsample
• HDL Cosimulation blocks for HDL Verifier
• Rate Transition
• Vision HDL Toolbox blocks

 Triggered Subsystem

2-315

See Also
Subsystem | Trigger

2 Supported Blocks

2-316

Trigonometric Function
Trigonometric Function implementations, properties, and restrictions for HDL code
generation

Description
The Trigonometric Function block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see
Trigonometric Function.

HDL Architecture
This block has multi-cycle implementations that introduce additional latency in the
generated code. View the generated model or validation model to see the added latency.
See “Generated Model and Validation Model”.

The Trigonometric Function block supports HDL code generation for the following
functions.

Architecture Supported Functions Supported
Approximation
Methods

Additional cycles of
latency

sin CORDIC Number of
iterations + 1

cos CORDIC Number of
iterations + 1

cos + jsin CORDIC Number of
iterations + 1

default

Trigonometric

sincos CORDIC Number of
iterations + 1

HDL Block Properties
ConstrainedOutputPipeline

 Trigonometric Function

2-317

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

For the sin and cos functions, only unsigned data types are supported for CORDIC
approximations.

HDL Coder displays an error when:

• You select an unsupported function on the Trigonometric Function block.
• You select an Approximation method other than CORDIC.

See Also
cordiccos | cordicsin | cordicsincos

2 Supported Blocks

2-318

Truth Table
Truth Table implementations, properties, and restrictions for HDL code generation

Description

The Truth Table block is available with Stateflow.

For information on the Simulink simulation behavior and block parameters, see Truth
Table.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstMultiplierOptimization

Canonical signed digit (CSD) or factored CSD optimization. The default is none. See
also “ConstMultiplierOptimization”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

InstantiateFunctions
Generate a VHDL entity or Verilog module for each function. The default is off.
See also “InstantiateFunctions”.

 Truth Table

2-319

LoopOptimization
Unroll, stream, or do not optimize loops. The default is none. See also
“LoopOptimization”.

MapPersistentVarsToRAM
Map persistent arrays to RAM. The default is off. See also
“MapPersistentVarsToRAM”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

UseMatrixTypesInHDL
Generate 2-D matrices in HDL code. The default is off. See also
“UseMatrixTypesInHDL”.

VariablesToPipeline

Warning VariablesToPipeline is not recommended. Use coder.hdl.pipeline
instead.

Insert a pipeline register at the output of the specified MATLAB variable or
variables. Specify the list of variables as a string, with spaces separating the
variables.

See Also
Chart | State Transition Table

2 Supported Blocks

2-320

Unary Minus
Unary Minus implementations, properties, and restrictions for HDL code generation

Description

The Unary Minus block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Unary
Minus.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Unit Delay

2-321

Unit Delay
Unit Delay implementations, properties, and restrictions for HDL code generation

Description

The Unit Delay block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Unit
Delay.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-322

Unit Delay Enabled
Unit Delay Enabled implementations, properties, and restrictions for HDL code
generation

Description

The Unit Delay Enabled block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Unit
Delay Enabled.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

ResetType
Suppress reset logic generation. The default is default, which generates reset logic.
See also “ResetType”.

Complex Data Support

This block supports code generation for complex signals.

 Unit Delay Enabled Resettable

2-323

Unit Delay Enabled Resettable
Unit Delay Enabled Resettable implementations, properties, and restrictions for HDL
code generation

Description

The Unit Delay Enabled Resettable block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Unit
Delay Enabled Resettable.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SoftReset
Specify on to generate reset logic for the block that is more efficient for synthesis, but
does not match the Simulink behavior. The default is off. See “SoftReset”.

2 Supported Blocks

2-324

Unit Delay Resettable
Unit Delay Resettable implementations, properties, and restrictions for HDL code
generation

Description

The Unit Delay Resettable block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Unit
Delay Resettable.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SoftReset
Specify on to generate reset logic for the block that is more efficient for synthesis, but
does not match the Simulink behavior. The default is off. See “SoftReset”.

 Upsample

2-325

Upsample

Upsample implementations, properties, and restrictions for HDL code generation

Description

The Upsample block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Upsample.

Best Practices

Consider whether your model can use the Repeat block instead of the Upsample block.
The Repeat block uses fewer hardware resources, so it is a best practice to use Upsample
only when your algorithm requires zero-padding upsampling.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline

2 Supported Blocks

2-326

Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 Variable Selector

2-327

Variable Selector
Variable Selector implementations, properties, and restrictions for HDL code generation

Description

The Variable Selector block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Variable
Selector.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-328

Variant Subsystem

Variant Subsystem implementations, properties, and restrictions for HDL code
generation

Description

The Variant Subsystem block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Variant
Subsystem.

HDL Architecture

Architecture Description

Module (default) Generate code for the subsystem and the blocks within the subsystem.
HDL Coder generates code for only the active variant.

BlackBox Generate a black-box interface. That is, the generated HDL code
includes only the input/output port definitions for the subsystem. In this
way, you can use a subsystem in your model to generate an interface to
existing manually written HDL code.

The black-box interface generated for subsystems is similar to the
interface generated for Model blocks, but without generation of clock
signals.

No HDL Remove the subsystem from the generated code. You can use the
subsystem in simulation but treat it as a “no-op” in the HDL code.

Black Box Interface Customization

For the BlackBox architecture, you can customize port names and set attributes of
the external component interface. See “Customize Black Box or HDL Cosimulation
Interface”.

 Variant Subsystem

2-329

HDL Block Properties

General

BalanceDelays
Delay balancing. The default is inherit. See also “BalanceDelays”.

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

DistributedPipelining
Pipeline register distribution, or register retiming. The default is off. See also
“DistributedPipelining”.

DSPStyle
Synthesis attributes for multiplier mapping. The default is none. See also
“DSPStyle”.

FlattenHierarchy
Remove subsystem hierarchy from generated HDL code. The default is inherit. See
also “FlattenHierarchy”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

SharingFactor
Number of functionally equivalent resources to map to a single shared resource. The
default is 0. See also “Resource Sharing”.

StreamingFactor
Number of parallel data paths, or vectors, to transform into serial, scalar data paths
by time-multiplexing serial data paths and sharing hardware resources. The default
is 0, which implements fully parallel data paths. See also “Streaming”.

2 Supported Blocks

2-330

Target Specification

This block cannot be the DUT, so the block property settings in the Target
Specification tab are ignored.

Restrictions

• The DUT cannot be a Variant Subsystem.

 Vector Concatenate

2-331

Vector Concatenate
Vector Concatenate implementations, properties, and restrictions for HDL code
generation

Description

The Vector Concatenate block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Vector
Concatenate.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

2 Supported Blocks

2-332

Vector Scope
Vector Scope implementations, properties, and restrictions for HDL code generation

Description

The Vector Scope block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Vector
Scope.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Viterbi Decoder

2-333

Viterbi Decoder

Viterbi Decoder implementations, properties, and restrictions for HDL code generation

Description

The Viterbi Decoder block is available with Communications System Toolbox.

For information on the Simulink simulation behavior and block parameters, see Viterbi
Decoder.

HDL Coder supports the following features of the Viterbi Decoder block:

• Non-recursive encoder/decoder with feed-forward trellis and simple shift register
generation configuration

• Sample-based input
• Decoder rates from 1/2 to 1/7
• Constraint length from 3 to 9

HDL Architecture

The Viterbi Decoder block decodes every bit by tracing back through a traceback depth
that you define for the block. The block implements a complete traceback for each
decision bit, using registers to store the minimum state index and branch decision in the
traceback decoding unit.

Register-Based Traceback

You can specify that the traceback decoding unit be pipelined to improve the speed of the
generated circuit. You can add pipeline registers to the traceback unit by specifying the
number of traceback stages per pipeline register.

Using the TracebackStagesPerPipeline implementation parameter, you can balance
the circuit performance based on system requirements. A smaller parameter value
indicates the requirement to add more registers to increase the speed of the traceback

2 Supported Blocks

2-334

circuit. Increasing the parameter value results in fewer registers along with a decrease in
the circuit speed.

For an example using TracebackStagesPerPipeline, see the “HDL Code Generation
for Viterbi Decoder” example model.

RAM-Based Traceback

Instead of using registers, you can choose to use RAMs to save the survivor branch
information.

1 Set the HDL Architecture property of the Viterbi Decoder block to RAM-based
Traceback.

2 Set the traceback depth on the Viterbi Decoder block mask.

 Viterbi Decoder

2-335

RAM-based traceback and register-based traceback differ in the following ways:

• The RAM-based implementation traces back through one set of data to find the initial
state to decode the previous set of data. The register-based implementation combines
the traceback and decode operations into one step. It uses the best state found from
the minimum operation as the decoding initial state.

• RAM-based implementation traces back through M samples, decodes the previous M
bits in reverse order, and releases one bit in order at each clock cycle. The register-
based implementation decodes one bit after a complete traceback.

2 Supported Blocks

2-336

Because of the differences in the two traceback algorithms, the RAM-based
implementation produces different numerical results than the register-based traceback.
A longer traceback depth, for example, 10 times the constraint length, is recommended in
the RAM-based traceback to achieve a similar bit error rate (BER) as the register-based
implementation. The size of RAM required for the implementation depends on the trellis
and the traceback depth.

See HDL Code Generation for Viterbi Decoder.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

TracebackStagesPerPipeline
See “Register-Based Traceback”.

Restrictions

• Punctured code: Do not select this option. Punctured code requires frame-based
input, which HDL Coder does not support.

• Decision type: The coder does not support the Unquantized decision type.
• Error if quantized input values are out of range: The coder does not support this

option.
• Operation mode: The coder supports only the Continuous mode.

../../comm/examples/hdl-code-generation-for-viterbi-decoder.html

 Viterbi Decoder

2-337

• Enable reset input port: When you enable both Enable reset input port and
Delay reset action to next time step, HDL support is provided. You must select
Continuous operation mode.

Input and Output Data Types

• When Decision type is set to Soft decision, the HDL implementation of
the Viterbi Decoder block supports fixed-point inputs and output. For input, the
fixed-point data type must be ufixN. N is the number of soft-decision bits. Signed
built-in data types (int8, int16, int32) are not supported. For output, the HDL
implementation of the Viterbi Decoder block supports block-supported output data
types.

• When Decision type is set to Hard decision, the block supports input with data
types ufix1 and Boolean. For output, the HDL implementation of the Viterbi
Decoder block supports block-supported output data types.

• The HDL implementation of the Viterbi Decoder block does not support double and
single input data types. The block does not support floating point output for fixed-
point inputs.

Example

The “HDL Code Generation for Viterbi Decoder” example shows HDL code generation
for a fixed-point Viterbi Decoder block, with pipelined traceback decoding. To open the
example, type the following command:

showdemo commviterbihdl_m

2 Supported Blocks

2-338

Waterfall
Waterfall implementations, properties, and restrictions for HDL code generation

Description

The Waterfall block is available with DSP System Toolbox.

For information on the Simulink simulation behavior and block parameters, see
Waterfall.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

 Wrap To Zero

2-339

Wrap To Zero
Wrap To Zero implementations, properties, and restrictions for HDL code generation

Description

The Wrap To Zero block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Wrap To
Zero.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties
ConstrainedOutputPipeline

Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Restrictions

The input signal and Threshold parameter must have equal size. For example, if the
input is a two-dimensional vector, Threshold must also be a two-dimensional vector.

2 Supported Blocks

2-340

Zero-Order Hold
Zero-Order Hold implementations, properties, and restrictions for HDL code generation

Description

The Zero-Order Hold block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see Zero-
Order Hold.

HDL Architecture

This block has a single default HDL architecture.

HDL Block Properties

ConstrainedOutputPipeline
Number of registers to place at the outputs by moving existing delays within your
design. Distributed pipelining does not redistribute these registers. The default is 0.
See also “ConstrainedOutputPipeline”.

InputPipeline
Number of input pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “InputPipeline”.

OutputPipeline
Number of output pipeline stages to insert in the generated code. Distributed
pipelining and constrained output pipelining can move these registers. The default is
0. See also “OutputPipeline”.

Complex Data Support

This block supports code generation for complex signals.

 XY Graph

2-341

XY Graph
XY Graph implementations, properties, and restrictions for HDL code generation

Description

The XY Graph block is available with Simulink.

For information on the Simulink simulation behavior and block parameters, see XY
Graph.

HDL Architecture

When you use this block in your model, HDL Coder does not generate HDL code for it.

3

Properties — Alphabetical List

3 Properties — Alphabetical List

3-2

AdderSharingMinimumBitwidth
Minimum bitwidth of shared adders for resource sharing optimization

Settings

N

Default: 0

Minimum bit width of a shared adder when using the resource sharing optimization,
specified as an integer greater than or equal to 0.

To use this parameter, you must enable ShareAdders. You must also enable resource
sharing for the parent subsystem.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MultiplierSharingMinimumBitwidth | ShareAdders | ShareAtomicSubsystems
| ShareMATLABBlocks | ShareMultipliers

More About
• “Resource Sharing”

 ClockRatePipelineOutputPorts

3-3

ClockRatePipelineOutputPorts
Enable clock-rate pipelining for DUT ports

Settings

'on'

Enable clock-rate pipelining for DUT ports.

'off' (default)

Disable clock-rate pipelining for DUT ports.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockRatePipelining

More About
• “Clock-Rate Pipelining”

3 Properties — Alphabetical List

3-4

BalanceDelays
Set delay balancing for the model

Settings

'on' (default)

Enable delay balancing for the model.

'off'

Disable delay balancing for the model.

Usage Notes

You can further control delay balancing within the model by disabling or enabling delay
balancing for subsystems within the model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

• “Delay Balancing ”
• “BalanceDelays”

 BlockGenerateLabel

3-5

BlockGenerateLabel
Specify string to append to block labels used for HDL GENERATE statements

Settings

'string'

Default: '_gen'

Specify a postfix string to append to block labels used for HDL GENERATE statements.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

InstanceGenerateLabel, OutputGenerateLabel

3 Properties — Alphabetical List

3-6

BlocksWithNoCharacterizationFile
Highlighting script for blocks without timing information in estimated critical path

Settings

'string'

Default: 'highlightCriticalPathEstimationOffendingBlocks'

Name of MATLAB script that contains commands to highlight blocks on the
estimated critical path without timing information. The script highlights blocks
in the generated model. HDL Coder saves the script when you generate code with
CriticalPathEstimation set to 'on'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
CriticalPathEstimation | CriticalPathEstimationFile

Related Examples
• “Find Estimated Critical Paths Without Synthesis Tools”

 CheckHDL

3-7

CheckHDL
Check model or subsystem for HDL code generation compatibility

Settings

'on'

Selected

Check the model or subsystem for HDL compatibility before generating code, and report
problems encountered. This is equivalent to executing the checkhdl function before
calling makehdl.

'off' (default)

Cleared (default)

Do not check the model or subsystem for HDL compatibility before generating code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

checkhdl, makehdl

3 Properties — Alphabetical List

3-8

ClockEdge
Specify active clock edge

Settings

'Rising' (default)

The rising clock edge triggers Verilog always or VHDL process blocks in the generated
code.

'Falling'

The falling clock edge triggers Verilog always or VHDL process blocks in the generated
code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ResetAssertedLevel, ClockInputPort, InputType, OutputType, ResetInputPort

 ClockEnableInputPort

3-9

ClockEnableInputPort
Name HDL port for model's clock enable input signals

Settings

'string'

Default: 'clk_enable'

The string specifies the name for the model's clock enable input port.

If you override the default with (for example) the string 'filter_clock_enable' for
the generating subsystem filter_subsys, the generated entity declaration might look
as follows:
ENTITY filter_subsys IS

 PORT(clk : IN std_logic;

 filter_clock_enable : IN std_logic;

 reset : IN std_logic;

 filter_subsys_in : IN std_logic_vector (15 DOWNTO 0);

 filter_subsys_out : OUT std_logic_vector (15 DOWNTO 0);

);

END filter_subsys;

If you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd. See ReservedWordPostfix for more information.

Usage Notes

The clock enable signal is asserted active high (1). Thus, the input value must be high for
the generated entity's registers to be updated.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-10

See Also

ClockInputPort, InputType, OutputType, ResetInputPort

 ClockEnableOutputPort

3-11

ClockEnableOutputPort
Specify name of clock enable output port

Settings

'string'

Default: 'ce_out'

The string specifies the name for the generated clock enable output port.

A clock enable output is generated when the design requires one.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-12

ClockHighTime
Specify period, in nanoseconds, during which test bench drives clock input signals high
(1)

Settings

ns

Default: 5

The clock high time is expressed as a positive integer.

The ClockHighTime and ClockLowTime properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Usage Notes

HDL Coder ignores this property if ForceClock is set to off.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockLowTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

 ClockInputs

3-13

ClockInputs
Specify generation of single or multiple clock inputs

Settings

'Single' (Default)

Generates a single clock input for the DUT. If the DUT is multirate, the input clock is the
master clock rate, and a timing controller is synthesized to generate additional clocks as
required.

'Multiple'

Generates a unique clock for each Simulink rate in the DUT. The number of timing
controllers generated depends on the contents of the DUT.

Usage Notes

The oversample factor must be 1 (default) to specify multiple clocks.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Example

The following example specifies the generation of multiple clocks.

makehdl(gcb, 'ClockInputs','Multiple');

3 Properties — Alphabetical List

3-14

ClockInputPort
Name HDL port for model's clock input signals

Settings

'string'

Default: 'clk'.

The string specifies the clock input port name.

If you override the default with (for example) the string 'filter_clock' for the
generated entity my_filter, the generated entity declaration might look as follows:

ENTITY my_filter IS

 PORT(filter_clock : IN std_logic;

 clk_enable : IN std_logic;

 reset : IN std_logic;

 my_filter_in : IN std_logic_vector (15 DOWNTO 0); -- sfix16_En15

 my_filter_out : OUT std_logic_vector (15 DOWNTO 0); -- sfix16_En15

);

END my_filter;

If you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd. See ReservedWordPostfix for more information.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockEnableInputPort, InputType, OutputType

 ClockLowTime

3-15

ClockLowTime
Specify period, in nanoseconds, during which test bench drives clock input signals low (0)

Settings

Default: 5

The clock low time is expressed as a positive integer.

The ClockHighTime and ClockLowTime properties define the period and duty cycle for
the clock signal. Using the defaults, the clock signal is a square wave (50% duty cycle)
with a period of 10 ns.

Usage Notes

HDL Coder ignores this property if ForceClock is set to off.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime, ForceClock, ForceClockEnable, ForceReset, HoldTime

3 Properties — Alphabetical List

3-16

ClockProcessPostfix
Specify string to append to HDL clock process names

Settings

'string'

Default: '_process'.

HDL Coder uses process blocks for register operations. The label for each of these blocks
is derived from a register name and the postfix _process. For example, the coder
derives the label delay_pipeline_process in the following block declaration from the
register name delay_pipeline and the default postfix string _process:

delay_pipeline_process : PROCESS (clk, reset)

BEGIN

 .

 .

 .

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

PackagePostfix, ReservedWordPostfix

 ClockRatePipelining

3-17

ClockRatePipelining
Insert pipeline registers at the clock rate instead of the data rate for multi-cycle paths

Settings

'on' (default)

Insert pipeline registers at clock rate for multi-cycle paths.

'off'

Insert pipeline registers at data rate for multi-cycle paths.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ClockRatePipelineOutputPorts

More About
• “Clock-Rate Pipelining”

3 Properties — Alphabetical List

3-18

CodeGenerationOutput
Control production of generated code and display of generated model

Settings

'string'

Default: 'GenerateHDLCode'

Generate code but do not display the generated model.

'GenerateHDLCodeAndDisplayGeneratedModel'

Generate both code and model, and display model when completed.

'DisplayGeneratedModelOnly'

Create and display generated model, but do not proceed to code generation.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
GeneratedModelName | GeneratedModelNamePrefix

More About
• “Generated Model and Validation Model”

 ComplexImagPostfix

3-19

ComplexImagPostfix
Specify string to append to imaginary part of complex signal names

Settings

'string'

Default: '_im'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ComplexRealPostfix

3 Properties — Alphabetical List

3-20

ComplexRealPostfix
Specify string to append to real part of complex signal names

Settings

'string'

Default: '_re'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ComplexImagPostfix

 CriticalPathEstimation

3-21

CriticalPathEstimation
Estimate critical path without running synthesis

Settings

'on'

Estimate the critical path without running synthesis. Generate a script that highlights
the estimated critical path in the generated model.

'off' (default)

Do not estimate the critical path.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
BlocksWithNoCharacterizationFile | CriticalPathEstimationFile

Related Examples
• “Find Estimated Critical Paths Without Synthesis Tools”

3 Properties — Alphabetical List

3-22

CriticalPathEstimationFile
Critical path estimation highlighting script name

Settings

'string'

Default: 'criticalPathEstimated'

Name of MATLAB script that contains commands to highlight the estimated critical
path in the generated model. HDL Coder saves the script when you generate code with
CriticalPathEstimation set to 'on'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
BlocksWithNoCharacterizationFile | CriticalPathEstimation

Related Examples
• “Find Estimated Critical Paths Without Synthesis Tools”

 DateComment

3-23

DateComment
Specify whether to include time/date information in the generated HDL file header

Settings

'on' (default)

Include time/date information in the generated HDL file header.

 -- --

 --

 -- File Name: hdlsrc\symmetric_fir.vhd

 -- Created: 2011-02-14 07:21:36

 --

'off'

Omit time/date information in the generated HDL file header.

 -- --

 --

 -- File Name: hdlsrc\symmetric_fir.vhd

 --

By omitting the time/date information in the file header, you can more easily determine
if two HDL files contain identical code. You can also avoid extraneous revisions of the
same file when checking in HDL files to a source code management (SCM) system.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-24

DetectBlackBoxNameCollision
Check for black box subsystems with the same HDL module name

Settings

'on' (default)

Check for black box subsystems that have the same HDL module name. Display a
warning if matching names are found.

'off'

Do not check for matching HDL module names in black box subsystems.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 DistributedPipeliningBarriers

3-25

DistributedPipeliningBarriers
Highlight blocks that are inhibiting distributed pipelining

Settings

'on' (default)

Generate a MATLAB script that highlights blocks that are inhibiting distributed
pipelining in the original model and generated model.

'off'

Do not generate a script to highlight blocks that are inhibiting distributed pipelining.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
DistributedPipeliningBarriersFile

Related Examples
• “Find Feedback Loops”

3 Properties — Alphabetical List

3-26

DistributedPipeliningBarriersFile
Distributed pipelining barriers highlighting script name

Settings

'string'

Default: 'highlightDistributedPipeliningBarriers'

Name of MATLAB script that contains commands to highlight blocks that are inhibiting
distributed pipelining in the original model and generated model. HDL Coder saves the
script when you generate code with DistributedPipeliningBarriers set to 'on'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
DistributedPipeliningBarriers

Related Examples
• “Find Feedback Loops”

 DistributedPipeliningPriority

3-27

DistributedPipeliningPriority
Specify priority for distributed pipelining algorithm

Settings

'NumericalIntegrity' (default)

Prioritize numerical integrity when distributing pipeline registers.

This option uses a conservative retiming algorithm that does not move registers across a
component if the functional equivalence to the original design is unknown.

'Performance'

Prioritize performance over numerical integrity.

Use this option if your design requires a higher clock frequency and the Simulink
behavior does not need to strictly match the generated code behavior.

This option uses a more aggressive retiming algorithm that moves registers across a
component even if the modified design’s functional equivalence to the original design is
unknown.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-28

EDAScriptGeneration
Enable or disable generation of script files for third-party tools

Settings

'on' (default)

Enable generation of script files.

'off'

Disable generation of script files.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

 EnablePrefix

3-29

EnablePrefix
Specify base name string for internal clock enables in generated code

Settings

'string'

Default: 'enb'

Specify the string used as the base name for internal clock enables and other flow control
signals in generated code.

Usage Notes

Where only a single clock enable is generated, EnablePrefix specifies the signal name
for the internal clock enable signal.

In some cases multiple clock enables are generated (for example, when a cascade block
implementation for certain blocks is specified). In such cases, EnablePrefix specifies
a base signal name for the first clock enable that is generated. For other clock enable
signals, numeric tags are appended to EnablePrefix to form unique signal names. For
example, the following code fragment illustrates two clock enables that were generated
when EnablePrefix was set to 'test_clk_enable' :

COMPONENT mysys_tc

 PORT(clk : IN std_logic;

 reset : IN std_logic;

 clk_enable : IN std_logic;

 test_clk_enable : OUT std_logic;

 test_clk_enable_5_1_0 : OUT std_logic

);

 END COMPONENT;

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-30

EntityConflictPostfix
Specify string to append to duplicate VHDL entity or Verilog module names

Settings

'string'

Default: '_block'

The specified postfix resolves duplicate VHDL entity or Verilog module names.

For example, if HDL Coder detects two entities with the name MyFilter, the coder
names the first entity MyFilter and the second entity MyFilter_block.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

PackagePostfix, ReservedWordPostfix

 ForceClock

3-31

ForceClock
Specify whether test bench forces clock input signals

Settings

'on' (default)

Selected (default)

Specify that the test bench forces the clock input signals. When this option is set, the
clock high and low time settings control the clock waveform.

'off'

Cleared

Specify that a user-defined external source forces the clock input signals.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockLowTime, ClockHighTime, ForceClockEnable, ForceReset, HoldTime

3 Properties — Alphabetical List

3-32

ForceClockEnable
Specify whether test bench forces clock enable input signals

Settings

'on' (default)

Selected (default)

Specify that the test bench forces the clock enable input signals to active high (1) or
active low (0), depending on the setting of the clock enable input value.

'off'

Cleared

Specify that a user-defined external source forces the clock enable input signals.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime, ClockLowTime, ForceClock, HoldTime

 ForceReset

3-33

ForceReset
Specify whether test bench forces reset input signals

Settings

'on' (default)

Selected (default)

Specify that the test bench forces the reset input signals. If you enable this option, you
can also specify a hold time to control the timing of a reset.

'off'

Cleared

Specify that a user-defined external source forces the reset input signals.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime, ClockLowTime, ForceClock, HoldTime

3 Properties — Alphabetical List

3-34

GenerateCoSimBlock
Generate HDL Cosimulation blocks for use in testing DUT

Settings

'on'

If your installation includes one or more of the following HDL simulation features, HDL
Coder generates an HDL Cosimulation block for each:

• HDL Verifier for use with Mentor Graphics ModelSim
• HDL Verifier for use with Cadence Incisive

The coder configures the generated HDL Cosimulation blocks to conform to the port
and data type interface of the DUT selected for code generation. By connecting an HDL
Cosimulation block to your model in place of the DUT, you can cosimulate your design
with the desired simulator.

The coder appends the string specified by the CosimLibPostfix property to the names
of the generated HDL Cosimulation blocks.

'off' (default)

Do not generate HDL Cosimulation blocks.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 GenerateCoSimModel

3-35

GenerateCoSimModel
Generate model containing HDL Cosimulation block for use in testing DUT

Settings

'ModelSim' (default)

If your installation includes HDL Verifier for use with Mentor Graphics ModelSim,
the HDL Coder software generates and opens a Simulink model that contains an HDL
Cosimulation block for Mentor Graphics ModelSim.

'Incisive'

If your installation includes HDL Verifier for use with Cadence Incisive, the HDL Coder
software generates and opens a Simulink model that contains an HDL Cosimulation
block for Cadence Incisive.

'None'

Do not create a cosimulation model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate a Cosimulation Model”

3 Properties — Alphabetical List

3-36

GeneratedModelName
Specify name of generated model

Settings

'string'

By default, the name of a generated model is the same as that of the original model.
Assign a string value to GeneratedModelName to override the default.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
CodeGenerationOutput | GeneratedModelNamePrefix

More About
• “Generated Model and Validation Model”

 GeneratedModelNamePrefix

3-37

GeneratedModelNamePrefix
Specify prefix to name of generated model

Settings

'string'

Default: 'gm_'

The specified string is prepended to the name of the generated model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
CodeGenerationOutput | GeneratedModelName

More About
• “Generated Model and Validation Model”

3 Properties — Alphabetical List

3-38

GenerateHDLCode
Generate HDL code

Settings

'on' (default)

Generate HDL code.

'off'

Do not generate HDL code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate HDL Code Using the Configuration Parameters Dialog Box”

 GenerateValidationModel

3-39

GenerateValidationModel
Generate validation model with HDL code

Settings

'on'

Generate a validation model that highlights generated delays and other differences
between your original model and the generated model. With a validation model, you can
observe the effects of streaming, resource sharing, and delay balancing.

'off' (default)

Do not generate a validation model.

Usage Notes

If you enable generation of a validation model, also enable delay balancing to keep
the generated DUT model synchronized with the original DUT model. Mismatches
between delays in the original DUT model and delays in the generated DUT model cause
validation to fail.

You can set this property using hdlset_param or makehdl.

You can also generate a validation model by selecting one of the following check boxes:

• Generate validation model in the HDL Code Generation pane of the
Configuration Parameters dialog box

• Generate validation model in the Generate RTL Code and Testbench task of
the HDL Workflow Advisor

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-40

See Also

• “Delay Balancing ”
• BalanceDelays

 GenerateWebview

3-41

GenerateWebview
Include model Web view in the code generation report

Settings

'on'

Include model Web view in the code generation report.

'off' (default)

Omit model Web view in the code generation report.

Usage Notes

With a model Web view, you can click a link in the generated code to highlight the
corresponding block in the model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Web View of Model in Code Generation Report”

3 Properties — Alphabetical List

3-42

HandleAtomicSubsystem
Enable reusable code generation for identical atomic subsystems

Settings

'on' (default)

Generate reusable code for identical atomic subsystems.

'off'

Do not generate reusable code for identical atomic subsystems.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MaskParameterAsGeneric

Related Examples
• “Generate Reusable Code for Atomic Subsystems”

 HDLCodingStandard

3-43

HDLCodingStandard
Generate HDL code that follows the specified coding standard

Settings

'None' (default)

Generate generic synthesizable HDL code.

'Industry'

Generate HDL code that follows the industry standard rules supported by the HDL
Coder software. When this option is enabled, the coder generates a standard compliance
report.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-44

HDLCodingStandardCustomizations
Specify HDL coding standard customization object

Settings

Specify an HDL coding standard customization object.

Usage Notes

When you create the HDL coding standard customization object, you must specify
the same standard as you specify for HDLCodingStandard. For example, if you set
HDLCodingStandard to 'Industry', create the coding standard customization object
using hdl.CodingStandard('Industry').

To learn how to specify an HDL coding standard customization object, see HDL Coding
Standard Customization Properties.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDLCompileInit

3-45

HDLCompileInit
Specify string written to initialization section of compilation script

Settings

'string'

Default: 'vlib %s\n'.

If your TargetLanguage is VHDL, the implicit argument, %s, is the contents of the
VHDLLibraryName property. If your TargetLanguage is Verilog, the implicit
argument is work.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
VHDLLibraryName

Related Examples
• “Generate Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-46

HDLCompileTerm
Specify string written to termination section of compilation script

Settings

'string'

The default is the null string ('').

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLCompileFilePostfix

3-47

HDLCompileFilePostfix
Specify postfix string appended to file name for generated Mentor Graphics ModelSim
compilation scripts

Settings

'string'

Default:'_compile.do'.

For example, if the name of the device under test or test bench is my_design, HDL
Coder adds the postfix _compile.do to form the name my_design_compile.do.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-48

HDLCompileVerilogCmd
Specify command string written to compilation script for Verilog files

Settings

'string'

Default: 'vlog %s %s\n'.

The two arguments are the contents of the SimulatorFlags property and the file name
of the current module. To omit the flags, set SimulatorFlags to '' (the default).

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLCompileVHDLCmd

3-49

HDLCompileVHDLCmd
Specify command string written to compilation script for VHDL files

Settings

'string'

Default: 'vcom %s %s\n'.

The two arguments are the contents of the SimulatorFlags property and the file name
of the current entity. To omit the flags, set SimulatorFlags to '' (the default).

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-50

HDLMapFilePostfix
Specify postfix string appended to file name for generated mapping file

Settings

'string'

Default: '_map.txt'.

For example, if the name of the device under test is my_design, HDL Coder adds the
postfix _map.txt to form the name my_design_map.txt.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 HDLSimCmd

3-51

HDLSimCmd
Specify simulation command written to simulation script

Settings

'string'

Default: 'vsim -novopt %s.%s\n'.

If your TargetLanguage is 'VHDL', the first implicit argument is the value of
VHDLLibraryName. If your TargetLanguage is 'Verilog', the first implicit argument
is 'work'.

The second implicit argument is the top-level module or entity name.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-52

HDLSimInit
Specify string written to initialization section of simulation script

Settings

'string'

The default string is

['onbreak resume\n',...

'onerror resume\n']

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLSimFilePostfix

3-53

HDLSimFilePostfix
Specify postfix string appended to file name for generated Mentor Graphics ModelSim
simulation scripts

Settings

'string'

Default: _sim.do.

For example, if the name of your test bench file is my_design, HDL Coder adds the
postfix _sim.do to form the name my_design_tb_sim.do.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-54

HDLSimTerm
Specify string written to termination section of simulation script

Settings

'string'

Default: 'run -all\n'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

 HDLSimViewWaveCmd

3-55

HDLSimViewWaveCmd
Specify waveform viewing command written to simulation script

Settings

'string'

Default: 'add wave sim:%s\n'

The implicit argument adds the signal paths for the DUT top-level input, output, and
output reference signals.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-56

HDLLintCmd
Specify command written to HDL lint script

Settings

'string'

Default: ''

Specify the HDL lint tool command in the Tcl script. The command string must contain
%s, which is a placeholder for the HDL file name.

Dependencies

If HDLLintCmd is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
command in the Tcl script.

Usage

If you set HDLLintTool to Custom, you must use %s as a placeholder for the HDL file
name in the generated Tcl script. Specify HDLLintCmd using the following format:

custom_lint_tool_command -option1 -option2 %s

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLLintTool, HDLLintInit, HDLLintTerm, “Generate an HDL Lint Tool Script”

 HDLLintInit

3-57

HDLLintInit
Specify HDL lint script initialization string

Settings

'string'

Default: ''

Specify the HDL lint script initialization string.

Dependencies

If HDLLintInit is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
initialization string in the Tcl script.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLLintTool, HDLLintCmd, HDLLintTerm, “Generate an HDL Lint Tool Script”

3 Properties — Alphabetical List

3-58

HDLLintTerm
Specify HDL lint script termination string

Settings

'string'

Default: ''

Specify the HDL lint script termination string.

Dependencies

If HDLLintTerm is set to the default value, '', and you set HDLLintCmd to one of the
supported third-party tools, HDL Coder automatically inserts a tool-specific default
termination string in the Tcl script.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLLintTool, HDLLintCmd, HDLLintInit, “Generate an HDL Lint Tool Script”

 HDLLintTool

3-59

HDLLintTool
Select HDL lint tool for which HDL Coder generates scripts

Settings

'string'

Default: 'None'.

HDLLintTool enables or disables generation of scripts for third-party HDL lint tools. By
default, HDL Coder does not generate a lint script.

To generate a script for one of the supported lint tools, set HDLLintTool to one of the
following strings:

HDLLintTool Option Lint Tool

'None' None. Lint script generation is disabled.
'AscentLint' Real Intent Ascent Lint
'Leda' Synopsys® Leda
'SpyGlass' Atrenta SpyGlass
'Custom' A custom lint tool.

Dependencies

If you set HDLLintTool to one of the supported third-party tools, you can generate a
Tcl script without setting HDLLintInit, HDLLintCmd, and HDLLintTerm to nondefault
values. If the HDLLintInit, HDLLintCmd, and HDLLintTerm have default values, HDL
Coder automatically writes tool-specific default initialization, command, and termination
strings to the Tcl script.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-60

See Also

Properties
HDLLintCmd | HDLLintInit | HDLLintTerm

Related Examples
• “Generate an HDL Lint Tool Script”

 HDLSynthCmd

3-61

HDLSynthCmd
Specify command written to synthesis script

Settings

'string'

Default: none.

Your choice of synthesis tool (see HDLSynthTool) sets the synthesis command string.
The default string is a format string passed to fprintf to write the command section of
the synthesis script. The implicit argument is the top-level module or entity name. The
content of the string is specific to the selected synthesis tool.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool, HDLSynthInit, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-62

HDLSynthFilePostfix
Specify postfix string appended to file name for generated synthesis scripts

Settings

'string'

Default: The value of HDLSynthFilePostfix normally defaults to a string that
corresponds to the synthesis tool that HDLSynthTool specifies.

For example, if the value of HDLSynthTool is 'Synplify', HDLSynthFilePostfix
defaults to the string '_synplify.tcl'. Then, if the name of the device under test is
my_design, HDL Coder adds the postfix _synplify.tcl to form the synthesis script
file name my_design_synplify.tcl.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool, HDLSynthCmd, HDLSynthInit, HDLSynthTerm, “Generate Scripts for
Compilation, Simulation, and Synthesis”

 HDLSynthInit

3-63

HDLSynthInit
Specify string written to initialization section of synthesis script

Settings

'string'

Default: none

Your choice of synthesis tool (see HDLSynthTool) sets the synthesis initialization string.
The default string is a format string passed to fprintf to write the initialization section
of the synthesis script. The default string is a synthesis project creation command. The
implicit argument is the top-level module or entity name. The content of the string is
specific to the selected synthesis tool.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool, HDLSynthCmd, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

3 Properties — Alphabetical List

3-64

HDLSynthTerm
Specify string written to termination section of synthesis script

Settings

'string'

Default: none

Your choice of synthesis tool (see HDLSynthTool) sets the synthesis termination string.
The default string is a format string passed to fprintf to write the termination and
clean up section of the synthesis script. This section does not take arguments. The
content of the string is specific to the selected synthesis tool.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HDLSynthTool, HDLSynthCmd, HDLSynthInit, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

 HDLSynthTool

3-65

HDLSynthTool
Select synthesis tool for which HDL Coder generates scripts

Settings
'string'

Default: 'None'.

HDLSynthTool enables or disables generation of scripts for third-party synthesis tools.
By default, HDL Coder does not generate a synthesis script. To generate a script for one
of the supported synthesis tools, set HDLSynthTool to one of the following strings:

Tip The value of HDLSynthTool also sets the postfix string (HDLSynthFilePostfix)
that the coder appends to generated synthesis script file names.

Choice of
HDLSynthTool
Value...

Generates Script For... Sets HDLSynthFilePostfix To...

'None' N/A; script generation disabled N/A
'ISE' Xilinx ISE '_ise.tcl'

'Libero' Microsemi Libero '_libero.tcl'

'Precision' Mentor Graphics Precision '_precision.tcl'

'Quartus' Altera Quartus II '_quartus.tcl'

'Synplify' Synopsys Synplify Pro® '_synplify.tcl'

'Vivado' Xilinx Vivado '_vivado.tcl'

'Custom' A custom synthesis tool '_custom.tcl'

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-66

See Also

HDLSynthCmd, HDLSynthInit, HDLSynthTerm, HDLSynthFilePostfix, “Generate
Scripts for Compilation, Simulation, and Synthesis”

 HierarchicalDistPipelining

3-67

HierarchicalDistPipelining
Specify whether to apply retiming across a subsystem hierarchy

Settings

'on'

Enable retiming across a subsystem hierarchy. HDL Coder applies retiming
hierarchically down, until it reaches a subsystem where DistributedPipelining is off.

'off' (default)

Distribute pipelining only within a subsystem.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“DistributedPipelining”

3 Properties — Alphabetical List

3-68

HighlightAncestors
Highlight ancestors of blocks in generated model that differ from original model

Settings

'on' (default)

Highlight blocks in a generated model that differ from the original model, and their
ancestor (parent) blocks in the model hierarchy. The HighlightColor property specifies
the highlight color.

'off'

Highlight only the blocks in a generated model that differ from the original model
without highlighting their ancestor (parent) blocks in the model hierarchy.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightColor

 HighlightColor

3-69

HighlightColor
Specify color for highlighted blocks in generated model

Settings

'string'

Default: 'cyan'.

Specify the color as one of the following color string values:

• 'cyan'

• 'yellow'

• 'magenta'

• 'red'

• 'green'

• 'blue'

• 'white'

• 'black'

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightAncestors

3 Properties — Alphabetical List

3-70

HighlightClockRatePipeliningDiagnostic
Highlight blocks that are inhibiting clock-rate pipelining

Settings

'on' (default)

Generate a MATLAB script that highlights blocks that are inhibiting clock-rate
pipelining in the original model and generated model.

'off'

Do not generate a script to highlight blocks that are inhibiting clock-rate pipelining.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightFeedbackLoopsFile

Related Examples
• “Find Feedback Loops”

 HighlightClockRatePipeliningFile

3-71

HighlightClockRatePipeliningFile
Clock-rate pipelining highlighting script name

Settings

'string'

Default: 'highlightClockRatePipelining'

Name of MATLAB script that contains commands to highlight blocks that are inhibiting
clock-rate pipelining in the original model and generated model. HDL Coder saves the
script when you generate code with HighlightClockRatePipeliningDiagnostic set
to 'on'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightClockRatePipeliningDiagnostic

Related Examples
• “Find Feedback Loops”

3 Properties — Alphabetical List

3-72

HighlightFeedbackLoops
Highlight feedback loops that can inhibit delay balancing and optimizations

Settings

'on'

Generate a MATLAB script that highlights feedback loops in the original model and
generated model.

'off' (default)

Do not generate a script to highlight feedback loops.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightFeedbackLoopsFile

Related Examples
• “Find Feedback Loops”

 HighlightFeedbackLoopsFile

3-73

HighlightFeedbackLoopsFile
Feedback loop highlighting script file name

Settings

'string'

Default: 'highlightFeedbackLoop'

Name of MATLAB script that contains commands to highlight feedback loops in the
original model and generated model. HDL Coder saves the script when you generate code
with HighlightFeedbackLoops set to 'on'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HighlightFeedbackLoops

Related Examples
• “Find Feedback Loops”

3 Properties — Alphabetical List

3-74

HoldInputDataBetweenSamples
Specify how long subrate signal values are held in valid state

Settings

'on' (default)

Data values for subrate signals are held in a valid state across N base-rate clock cycles,
where N is the number of base-rate clock cycles that elapse per subrate sample period
and N >= 2.

'off'

Data values for subrate signals are held in a valid state for only one base-rate clock cycle.
For the subsequent base-rate cycles, data is in an unknown state (expressed as 'X') until
leading edge of the next subrate sample period.

Usage Notes

In most cases, the default ('on') is the best setting for this property. This setting
matches the behavior of a Simulink simulation, in which subrate signals are held valid
through each base-rate clock period.

In some cases (for example modeling memory or memory interfaces), it is desirable to
set HoldInputDataBetweenSamples to 'off'. In this way, you can obtain diagnostic
information about when data is in an invalid ('X') state.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldTime, “Code Generation from Multirate Models”

 HoldTime

3-75

HoldTime
Specify hold time for input signals and forced reset input signals

Settings

ns

Default: 2

Specify the number of nanoseconds during which the model's data input signals and
forced reset input signals are held past the clock rising edge.

The hold time is expressed as a positive integer.

This option applies to reset input signals only if forced resets are enabled.

Usage Notes

The hold time is the amount of time that reset input signals and input data are held past
the clock rising edge. The following figures show the application of a hold time (thold) for
reset and data input signals when the signals are forced to active high and active low.

Clock

Reset Input
Active High

thold

thold

Reset Input
Active Low

Hold Time for Reset Input Signals

3 Properties — Alphabetical List

3-76

Clock

Data Input

thold

Hold Time for Data Input Signals

Note: A reset signal is always asserted for two cycles plus thold.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockHighTime, ClockLowTime, ForceClock

 IgnoreDataChecking

3-77

IgnoreDataChecking
Specify number of samples during which output data checking is suppressed

Settings

N

Default: 0.

N must be a positive integer.

When N > 0, the test bench suppresses output data checking for the first N output
samples after the clock enable output (ce_out) is asserted.

Usage Notes

When using pipelined block implementations, output data may be in an invalid state for
some number of samples. To avoid spurious test bench errors, determine this number
and set IgnoreDataChecking accordingly.

Be careful to specify N as a number of samples, not as a number of clock cycles. For
a single-rate model, these are equivalent, but they are not equivalent for a multirate
model.

You should use IgnoreDataChecking in cases where there is a state (register) initial
condition in the HDL code that does not match the Simulink state, including the
following specific cases:

• When you set theDistributedPipelining parameter to 'on' for the MATLAB
Function block (see “Distributed Pipeline Insertion for MATLAB Function Blocks”).

• When you set the ResetType parameter to 'None' (see “ResetType”) for the
following block types:

• commcnvintrlv2/Convolutional Deinterleaver
• commcnvintrlv2/Convolutional Interleaver
• commcnvintrlv2/General Multiplexed Deinterleaver

3 Properties — Alphabetical List

3-78

• commcnvintrlv2/General Multiplexed Interleaver
• dspsigops/Delay
• simulink/Additional Math & Discrete/Additional Discrete/Unit Delay Enabled
• simulink/Commonly Used Blocks/Unit Delay
• simulink/Discrete/Delay
• simulink/Discrete/Memory
• simulink/Discrete/Tapped Delay
• simulink/User-Defined Functions/MATLAB Function
• sflib/Chart
• sflib/Truth Table

• When generating a black box interface to existing manually-written HDL code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 InitializeBlockRAM

3-79

InitializeBlockRAM
Enable or suppress generation of initial signal value for RAM blocks

Settings

'on' (default)

For RAM blocks, generate initial values of '0' for both the RAM signal and the output
temporary signal.

'off'

For RAM blocks, do not generate initial values for either the RAM signal or the output
temporary signal.

Usage Notes

This property applies to RAM blocks in the HDL Operations block library:

• Dual Port RAM
• Simple Dual Port RAM
• Single Port RAM
• Dual Rate Dual Port RAM

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

IgnoreDataChecking

3 Properties — Alphabetical List

3-80

InitializeTestBenchInputs
Specify initial value driven on test bench inputs before data is asserted to DUT

Settings

'on'

Initial value driven on test bench inputs is'0'.

'off' (default)

Initial value driven on test bench inputs is 'X' (unknown).

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 InlineConfigurations

3-81

InlineConfigurations
Specify whether generated VHDL code includes inline configurations

Settings

'on' (default)

Selected (default)

Include VHDL configurations in files that instantiate a component.

'off'

Cleared

Suppress the generation of configurations and require user-supplied external
configurations. Use this setting if you are creating your own VHDL configuration files.

Usage Notes

VHDL configurations can be either inline with the rest of the VHDL code for an entity or
external in separate VHDL source files. By default, HDL Coder includes configurations
for a model within the generated VHDL code. If you are creating your own VHDL
configuration files, you should suppress the generation of inline configurations.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling, SafeZeroConcat, UseAggregatesForConst, UseRisingEdge

3 Properties — Alphabetical List

3-82

InlineMATLABBlockCode
Inline HDL code for MATLAB Function blocks

Settings

'on'

Inline HDL code for MATLAB Function blocks to avoid instantiation of code for custom
blocks.

'off' (default)

Instantiate HDL code for MATLAB Function blocks and do not inline.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Examples

Enable inlining of HDL code:

mdl = 'my_custom_block_model';

hdlset_param(mdl,'InlineMATLABBlockCode','on');

Enable instantiation of HDL code:

mdl = 'my_custom_block_model';

hdlset_param(mdl,'InlineMATLABBlockCode','off');

 InputType

3-83

InputType
Specify HDL data type for model input ports

Settings

Default (for VHDL):'std_logic_vector'

Default (for VHDL): std_logic_vector

Specifies VHDL type STD_LOGIC_VECTOR for the model's input ports.

'signed/unsigned'

signed/unsigned

Specifies VHDL type SIGNED or UNSIGNED for the model's input ports.

'wire' (Verilog)

wire (Verilog)

If the target language is Verilog, the data type for all ports is wire. This property is not
modifiable in this case.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockEnableInputPort, OutputType

3 Properties — Alphabetical List

3-84

InstanceGenerateLabel
Specify string to append to instance section labels in VHDL GENERATE statements

Settings

'string'

Default: '_gen'

Specify a postfix string to append to instance section labels in VHDL GENERATE
statements.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

BlockGenerateLabel, OutputGenerateLabel

 InstancePostfix

3-85

InstancePostfix
Specify string appended to generated component instance names

Settings

'string'

Default: '' (no postfix appended)

Specify a string to be appended to component instance names in generated code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-86

InstancePrefix
Specify string prefixed to generated component instance names

Settings

'string'

Default: 'u_'

Specify a string to be prefixed to component instance names in generated code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 LoopUnrolling

3-87

LoopUnrolling

Specify whether VHDL FOR and GENERATE loops are unrolled and omitted from
generated VHDL code

Settings

'on'

Selected

Unroll and omit FOR and GENERATE loops from the generated VHDL code.

In Verilog code, loops are always unrolled.

If you are using an electronic design automation (EDA) tool that does not support
GENERATE loops, you can enable this option to omit loops from your generated VHDL
code.

'off' (default)

Cleared (default)

Include FOR and GENERATE loops in the generated VHDL code.

Usage Notes

The setting of this option does not affect results obtained from simulation or synthesis of
generated VHDL code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-88

See Also

InlineConfigurations, SafeZeroConcat, UseAggregatesForConst,
UseRisingEdge

 MaskParameterAsGeneric

3-89

MaskParameterAsGeneric
Generate reusable HDL code for subsystems with identical mask parameters that differ
only in value

Settings
'on'

Generate one HDL file for multiple masked subsystems with different values for tunable
mask parameters. HDL Coder automatically detects atomic subsystems with tunable
mask parameters that are sharable.

Inside the subsystem, you can use the mask parameter only in the following blocks and
parameters:

Block Parameter Limitation

Constant Constant value on the
Main tab of the dialog box

None

Gain Gain on the Main tab of the
dialog box

Parameter data type
should be the same for all
Gain blocks.

'off' (default)

Generate a separate HDL file for each masked subsystem.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HandleAtomicSubsystem

Related Examples
• “Generate Reusable Code for Atomic Subsystems”

3 Properties — Alphabetical List

3-90

More About
• “Generate parameterized HDL code from masked subsystem”

 MaxComputationLatency

3-91

MaxComputationLatency
Specify the maximum number of time steps for which your DUT inputs are guaranteed to
be stable

Settings

1 (default)

DUT input data can change every cycle.

N, where N is an integer greater than 1

DUT input data can change every N cycles.

Usage Notes

Use with MaxOversampling to prevent or reduce overclocking by constraining resource
sharing and streaming optimizations.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Properties
MaxOversampling

More About
• “Maximum Computation Latency”
• “Maximum Oversampling Ratio”
• “Optimization with Constrained Overclocking”

3 Properties — Alphabetical List

3-92

MaxOversampling
Limit the maximum sample rate

Settings

0 (default)

Do not set a limit on the maximum sample rate.

1

Do not allow oversampling.

N, where N is an integer greater than 1

Allow oversampling up to N times the original model sample rate.

Usage Notes

Use with MaxComputationLatency to prevent or reduce overclocking by constraining
resource sharing and streaming optimizations.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Properties
MaxComputationLatency

More About
• “Maximum Oversampling Ratio”

 MaxOversampling

3-93

• “Maximum Computation Latency”
• “Optimization with Constrained Overclocking”

3 Properties — Alphabetical List

3-94

MinimizeClockEnables

Omit generation of clock enable logic for single-rate designs

Settings

'on'

Omit generation of clock enable logic for single-rate designs, wherever possible (see
“Usage Notes” on page 3-95). The following VHDL code example does not define or
examine a clock enable signal. When the clock signal (clk) goes high, the current signal
value is output.

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END PROCESS Unit_Delay_process;

'off' (default)

Generate clock enable logic. The following VHDL code extract represents a register with
a clock enable (enb)

Unit_Delay_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay_out1 <= to_signed(0, 32);

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Unit_Delay_out1 <= In1_signed;

 END IF;

 END IF;

 END PROCESS Unit_Delay_process;

 MinimizeClockEnables

3-95

Usage Notes

In some cases, HDL Coder emits clock enables even when MinimizeClockEnables is
'on'. These cases are:

• Registers inside Enabled, State-Enabled, and Triggered subsystems.
• Multirate models.
• The coder emits clock enables for the following blocks:

• commseqgen2/PN Sequence Generator
• dspsigops/NCO

Note: HDL support for the NCO block will be removed in a future release. Use the
NCO HDL Optimized block instead.

• dspsrcs4/Sine Wave
• hdldemolib/HDL FFT
• built-in/DiscreteFir
• dspmlti4/CIC Decimation
• dspmlti4/CIC Interpolation
• dspmlti4/FIR Decimation
• dspmlti4/FIR Interpolation
• dspadpt3/LMS Filter
• dsparch4/Biquad Filter

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-96

MinimizeIntermediateSignals
Specify whether to optimize HDL code for debuggability or code coverage

Settings

'on'

Optimize for code coverage by minimizing intermediate signals. For example, suppose
that the generated code with this setting off is:
const3 <= to_signed(24, 7);

subtractor_sub_cast <= resize(const3, 8);

subtractor_sub_cast_1 <= resize(delayout, 8);

subtractor_sub_temp <= subtractor_sub_cast - subtractor_sub_cast_1;

With this setting on, the output code is optimized to:
subtractor_sub_temp <= 24 - (resize(delayout, 8));

The intermediate signals const3, subtractor_sub_cast, and
subtractor_sub_cast_1 are removed.

'off' (default)

Optimize for debuggability by preserving intermediate signals.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 ModulePrefix

3-97

ModulePrefix
Specify prefix string for DUT module or entity name

Settings

'string'

Default: ''

Specify a prefix for every module or entity name in the generated HDL code. HDL Coder
also applies this prefix to generated script file names.

Usage Notes

You can specify the module name prefix to avoid name collisions if you plan to instantiate
the generated HDL code multiple times in a larger system.

For example, suppose you have a DUT, myDut, containing an internal module, myUnit.
You can prefix the modules within your design with the string, unit1_, by entering the
following command:

hdlset_param ('path/to/myDut', 'ModulePrefix','unit1_')

In the generated code, your HDL module names are unit1_myDut and unit1_myUnit,
with corresponding HDL file names. Generated script file names also have the unit1_
prefix.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-98

MulticyclePathInfo
Generate text file that reports multicycle path constraint information for use with
synthesis tools

Settings

'on'

Selected

Generate a multicycle path information file.

'off' (default)

Do not generate a multicycle path information file.

Usage Notes

The file name for the multicycle path information file derives from the name of the DUT
and the postfix string '_constraints', as follows:

DUTname_constraints.txt

For example, if the DUT name is symmetric_fir, the name of the multicycle path
information file is symmetric_fir_constraints.txt.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Multicycle Path Information Files ”

 MultifileTestBench

3-99

MultifileTestBench
Divide generated test bench into helper functions, data, and HDL test bench code files

Settings

'on'

Write separate files for test bench code, helper functions, and test bench data. The file
names are derived from the name of the DUT, the TestBenchPostfix property, and the
TestBenchDataPostfix property as follows:

DUTname_TestBenchPostfix_TestBenchDataPostfix

For example, if the DUT name is symmetric_fir, and the target language is VHDL, the
default test bench file names are:

• symmetric_fir_tb.vhd: test bench code
• symmetric_fir_tb_pkg.vhd: helper functions package
• symmetric_fir_tb_data.vhd: data package

If the DUT name is symmetric_fir and the target language is Verilog, the default test
bench file names are:

• symmetric_fir_tb.v: test bench code
• symmetric_fir_tb_pkg.v: helper functions package
• symmetric_fir_tb_data.v: test bench data

'off' (default)

Write a single test bench file containing the HDL test bench code and helper functions
and test bench data.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-100

See Also

TestBenchPostFix, TestBenchDataPostFix

 MultiplierPartitioningThreshold

3-101

MultiplierPartitioningThreshold
Multiplier partitioning bit width threshold

Settings

N

Default: Inf

N must be an integer greater than or equal to 2.

The maximum bit width for a multiplier. If a multiplier has a bit width greater than or
equal to MultiplierPartitioningThreshold, HDL Coder splits the multiplier into
smaller multipliers.

To improve your hardware mapping results, set MultiplierPartitioningThreshold
to the bit width of the DSP or multiplier hardware on your target device.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-102

MultiplierSharingMinimumBitwidth
Minimum bit width of shared multipliers for resource sharing optimization

Settings

N

Default: 0

Minimum bit width of a shared multiplier when using the resource sharing optimization,
specified as an integer greater than or equal to 0.

To use this parameter, you must enable ShareMultipliers. You must also enable
resource sharing for the parent subsystem.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
AdderSharingMinimumBitwidth | ShareAdders | ShareAtomicSubsystems |
ShareMATLABBlocks | ShareMultipliers | ShareMultipliers

More About
• “Resource Sharing”

 OptimizationReport

3-103

OptimizationReport
Display HTML optimization report

Settings

'on'

Create and display an HTML optimization report.

'off' (default)

Do not create an HTML optimization report.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ Create and Use Code Generation Reports”

3 Properties — Alphabetical List

3-104

OptimizeTimingController
Optimize timing controller entity by implementing separate counters per rate

Settings

'on' (default)

A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model.
• When a cascade block implementation for certain blocks is specified.

This file contains a module defining timing signals (clock, reset, external clock enable
inputs and clock enable output) in a separate entity or module. In a multirate model, the
timing controller entity generates the required rates from a single master clock using one
or more counters and multiple clock enables.

When OptimizeTimingController is set 'on' (the default), HDL Coder generates
multiple counters (one counter for each rate in the model). The benefit of this
optimization is that it generates faster logic, and the size of the generated code is usually
much smaller.

'off'

When OptimizeTimingController is set 'off', the timing controller uses one
counter to generate the rates in the model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Code Generation from Multirate Models”, EnablePrefix,
TimingControllerPostfix

 OutputGenerateLabel

3-105

OutputGenerateLabel
Specify string that labels output assignment block for VHDL GENERATE statements

Settings

'string'

Default: 'outputgen'

Specify a postfix string to append to output assignment block labels in VHDL GENERATE
statements.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

BlockGenerateLabel, OutputGenerateLabel

3 Properties — Alphabetical List

3-106

OutputType
Specify HDL data type for model output ports

Settings

'Same as input data type' (VHDL default)

Same as input data type (VHDL default)

Output ports have the same type as the specified input port type.

'std_logic_vector'

std_logic_vector

Output ports have VHDL type STD_LOGIC_VECTOR.

'signed/unsigned'

signed/unsigned

Output ports have type SIGNED or UNSIGNED.

'wire' (Verilog)

wire (Verilog)

If the target language is Verilog, the data type for all ports is wire. This property is not
modifiable in this case.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockEnableInputPort, InputType

 Oversampling

3-107

Oversampling
Specify frequency of global oversampling clock as a multiple of model base rate

Settings

N

Default: 1.

N must be an integer greater than or equal to 0.

Oversampling specifies N, the oversampling factor of a global oversampling clock. The
oversampling factor expresses the global oversampling clock rate as a multiple of your
model's base rate.

When you specify an oversampling factor greater than 1, HDL Coder generates the global
oversampling clock and derives the required timing signals from the clock signal. By
default, the coder does not generate a global oversampling clock.

Generation of the global oversampling clock affects only generated HDL code. The clock
does not affect the simulation behavior of your model.

If you want to generate a global oversampling clock:

• The oversampling factor must be an integer greater than or equal to 1.
• In a multirate DUT, the other rates in the DUT must divide evenly into the global

oversampling rate.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate a Global Oversampling Clock ”

3 Properties — Alphabetical List

3-108

PackagePostfix
Specify string to append to specified model or subsystem name to form name of package
file

Settings

'string'

Default: '_pkg'

HDL Coder applies this option only if a package file is required for the design.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockProcessPostfix, EntityConflictPostfix, ReservedWordPostfix

 PipelinePostfix

3-109

PipelinePostfix
Specify string to append to names of input or output pipeline registers generated for
pipelined block implementations

Settings

'string'

Default: '_pipe'

When you specify a generation of input and/or output pipeline registers for selected
blocks, HDL Coder appends the string specified by the PipelinePostfix property
when generating code for such pipeline registers.

For example, suppose you specify a pipelined output implementation for a Product block
in a model, as in the following code:
 hdlset_param('sfir_fixed/symmetric_fir/Product','OutputPipeline', 2)

The following makehdl command specifies that the coder appends'testpipe' to
generated pipeline register names.

makehdl(gcs,'PipelinePostfix','testpipe');

The following excerpt from generated VHDL code shows process the PROCESS code, with
postfixed identifiers, that implements two pipeline stages:
Product_outtestpipe_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Product_outtestpipe_reg <= (OTHERS => to_signed(0, 33));

 ELSIF clk'EVENT AND clk = '1' THEN

 IF enb = '1' THEN

 Product_outtestpipe_reg(0) <= Product_out1;

 Product_outtestpipe_reg(1) <= Product_outtestpipe_reg(0);

 END IF;

 END IF;

 END PROCESS Product_outtestpipe_process;

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-110

See Also

“HDL Block Properties”, “InputPipeline”, “OutputPipeline”

 PreserveDesignDelays

3-111

PreserveDesignDelays
Enable to prevent distributed pipelining from moving design delays

Settings

'on'

Prevent distributed pipelining from moving design delays, such as:

• Persistent variable in a MATLAB Function block or Stateflow Chart
• Unit Delay block
• Integer Delay block
• Memory block
• Delay block from DSP System Toolbox
• dsp.Delay System object from DSP System Toolbox

'off' (default)

Allow distributed pipelining to move design delays.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

More About
• “Distributed Pipelining and Hierarchical Distributed Pipelining”

3 Properties — Alphabetical List

3-112

RAMArchitecture
Select RAM architecture with or without clock enable for all RAMs in DUT subsystem

Settings

'WithClockEnable' (default)

Generate RAMs with clock enable.

'WithoutClockEnable'

Generate RAMs without clock enable.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 RAMMappingThreshold

3-113

RAMMappingThreshold
Specify the minimum RAM size required for mapping to RAMs instead of registers

Settings

N

Default: 256.

N must be an integer greater than or equal to 0.

RAMMappingThreshold defines the minimum RAM size required for mapping to RAM
instead of registers. This threshold applies to:

• Delay blocks
• Persistent variables in MATLAB Function blocks

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

Example

To change the RAM mapping threshold for a model, use the hdlset_param function. For
example:

hdlset_param('sfir_fixed', 'RAMMappingThreshold', 1024);

That command sets the threshold for the sfir_fixed model to 1024 bits.

See Also

• “UseRAM” in the HDL Coder documentation

3 Properties — Alphabetical List

3-114

• “MapPersistentVarsToRAM” in the HDL Coder documentation

 RequirementComments

3-115

RequirementComments
Enable or disable generation of hyperlinked requirements comments in HTML code
generation reports

Settings

'on' (default)

If the model includes requirements comments, generate hyperlinked requirements
comments within the HTML code generation report. The comments link to the
corresponding requirements documents.

'off'

When generating an HTML code generation report, render requirements as comments
within the generated code

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ Create and Use Code Generation Reports”, “Generate Code with Annotations or
Comments”, Traceability

3 Properties — Alphabetical List

3-116

ReservedWordPostfix
Specify string appended to identifiers for entities, signals, constants, or other model
elements that conflict with VHDL or Verilog reserved words

Settings

'string'

Default: '_rsvd'.

The reserved word postfix is applied identifiers (for entities, signals, constants, or other
model elements) that conflict with VHDL or Verilog reserved words. For example, if your
generating model contains a signal named mod, HDL Coder adds the postfix _rsvd to
form the name mod_rsvd.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ClockProcessPostfix, EntityConflictPostfix, ReservedWordPostfix

 ResetAssertedLevel

3-117

ResetAssertedLevel

Specify asserted (active) level of reset input signal

Settings

'active-high' (default)

Active-high (default)

Specify that the reset input signal must be driven high (1) to reset registers in the model.
For example, the following code fragment checks whether reset is active high before
populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '1' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

'active-low'

Active-low

Specify that the reset input signal must be driven low (0) to reset registers in the model.
For example, the following code fragment checks whether reset is active low before
populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)

BEGIN

 IF reset = '0' THEN

 delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

.

.

.

3 Properties — Alphabetical List

3-118

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ResetType, ClockInputPort, ClockEdge

 ResetInputPort

3-119

ResetInputPort
Name HDL port for model's reset input

Settings

'string'

Default: 'reset'.

The string specifies the name for the model's reset input port. If you override the default
with (for example) the string 'chip_reset' for the generating system myfilter, the
generated entity declaration might look as follows:

ENTITY myfilter IS

 PORT(clk : IN std_logic;

 clk_enable : IN std_logic;

 chip_reset : IN std_logic;

 myfilter_in : IN std_logic_vector (15 DOWNTO 0);

 myfilter_out : OUT std_logic_vector (15 DOWNTO 0);

);

END myfilter;

If you specify a string that is a VHDL or Verilog reserved word, the code generator
appends a reserved word postfix string to form a valid VHDL or Verilog identifier. For
example, if you specify the reserved word signal, the resulting name string would be
signal_rsvd. See ReservedWordPostfix for more information.

Usage Notes

If the reset asserted level is set to active high, the reset input signal is asserted active
high (1) and the input value must be high (1) for the entity's registers to be reset. If the
reset asserted level is set to active low, the reset input signal is asserted active low (0)
and the input value must be low (0) for the entity's registers to be reset.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-120

See Also

ClockEnableInputPort, InputType, OutputType

 ResetLength

3-121

ResetLength
Define length of time (in clock cycles) during which reset is asserted

Settings

N

Default: 2.

N must be an integer greater than or equal to 0.

Resetlength defines N, the number of clock cycles during which reset is asserted. The
following figure illustrates the default case, in which the reset signal (active-high) is
asserted for 2 clock cycles.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-122

ResetType
Specify whether to use asynchronous or synchronous reset logic when generating HDL
code for registers

Settings

'async' (default)

Asynchronous (default)

Use asynchronous reset logic. The following process block, generated by a Unit Delay
block, illustrates the use of asynchronous resets. When the reset signal is asserted, the
process block performs a reset, without checking for a clock event.

Unit_Delay1_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay1_out1 <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 Unit_Delay1_out1 <= signed(x_in);

 END IF;

 END IF;

 END PROCESS Unit_Delay1_process;

'sync'

Synchronous

Use synchronous reset logic. Code for a synchronous reset follows. The following process
block, generated by a Unit Delay block, checks for a clock event, the rising edge, before
performing a reset:

Unit_Delay1_process : PROCESS (clk)

 BEGIN

 IF rising_edge(clk) THEN

 IF reset = '1' THEN

 Unit_Delay1_out1 <= (OTHERS => '0');

 ELSIF clk_enable = '1' THEN

 Unit_Delay1_out1 <= signed(x_in);

 END IF;

 ResetType

3-123

 END IF;

 END PROCESS Unit_Delay1_process;

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

ResetAssertedLevel

3 Properties — Alphabetical List

3-124

ResourceReport
Display HTML resource utilization report

Settings

'on'

Create and display an HTML resource utilization report (bill of materials).

'off' (default)

Do not create an HTML resource utilization report.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ Create and Use Code Generation Reports”

 SafeZeroConcat

3-125

SafeZeroConcat
Specify syntax for concatenated zeros in generated VHDL code

Settings

'on' (default)

Selected (default)

Use the type-safe syntax, '0' & '0', for concatenated zeros. Typically, this syntax is
preferred.

'off'

Cleared

Use the syntax "000000..." for concatenated zeros. This syntax can be easier to read
and is more compact, but it can lead to ambiguous types.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling, UseAggregatesForConst, UseRisingEdge

3 Properties — Alphabetical List

3-126

ScalarizePorts
Flatten vector ports into structure of scalar ports in VHDL code

Settings

'on'

When generating code for a vector port, generate a structure of scalar ports

'off' (default)

Do not generate a structure of scalar ports for a vector port.

Usage Notes

The ScalarizePorts property lets you control how HDL Coder generates VHDL code
for vector ports.

For example, consider the subsystem vsum in the following figure.

By default, ScalarizePorts is 'off'. The coder generates a type definition and port
declaration for the vector port In1 like the following:
PACKAGE simplevectorsum_pkg IS

 TYPE vector_of_std_logic_vector16 IS ARRAY (NATURAL RANGE <>)

 OF std_logic_vector(15 DOWNTO 0);

 TYPE vector_of_signed16 IS ARRAY (NATURAL RANGE <>) OF signed(15 DOWNTO 0);

END simplevectorsum_pkg;

 ScalarizePorts

3-127

.

.

.

ENTITY vsum IS

 PORT(In1 : IN vector_of_std_logic_vector16(0 TO 9); -- int16 [10]

 Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

END vsum;

Under VHDL typing rules two types declared in this manner are not compatible across
design units. This may cause problems if you need to interface two or more generated
VHDL code modules.

You can flatten such a vector port into a structure of scalar ports by enabling
ScalarizePorts in your makehdl command, as in the following example.
 makehdl(gcs,'ScalarizePorts','on')

The listing below shows the generated ports.
ENTITY vsum IS

 PORT(In1_0 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_1 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_2 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_3 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_4 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_5 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_6 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_7 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_8 : IN std_logic_vector(15 DOWNTO 0); -- int16

 In1_9 : IN std_logic_vector(15 DOWNTO 0); -- int16

 Out1 : OUT std_logic_vector(19 DOWNTO 0) -- sfix20

);

END vsum;

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“Generate Black Box Interface for Referenced Model”

3 Properties — Alphabetical List

3-128

ShareAdders
Share adders with resource sharing optimization

Settings

'on'

When resource sharing is enabled, share adders with a bit width greater than or equal to
AdderSharingMinimumBitwidth.

'off' (default)

Do not share adders.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
AdderSharingMinimumBitwidth | ShareAtomicSubsystems |
ShareMATLABBlocks | ShareMultipliers

More About
• “Resource Sharing”

 ShareAtomicSubsystems

3-129

ShareAtomicSubsystems
Share atomic subsystems with resource sharing optimization

Settings

'on' (default)

When resource sharing is enabled, share atomic subsystems.

'off'

Do not share atomic subsystems.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ShareAdders | ShareMATLABBlocks | ShareMultipliers

More About
• “Resource Sharing”

3 Properties — Alphabetical List

3-130

ShareMATLABBlocks
Share MATLAB Function blocks with resource sharing optimization

Settings

'on' (default)

When resource sharing is enabled, share MATLAB Function blocks.

'off'

Do not share MATLAB Function blocks.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
ShareAdders | ShareAtomicSubsystems | ShareMultipliers

More About
• “Resource Sharing”

 ShareMultipliers

3-131

ShareMultipliers
Share multipliers with resource sharing optimization

Settings

'on' (default)

When resource sharing is enabled, share multipliers with a bit width greater than or
equal to MultiplierSharingMinimumBitwidth.

'off'

Do not share multipliers.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
MultiplierSharingMinimumBitwidth | ShareAdders | ShareAtomicSubsystems
| ShareMATLABBlocks

More About
• “Resource Sharing”

3 Properties — Alphabetical List

3-132

SimulatorFlags
Specify simulator flags to apply to generated compilation scripts

Settings

'string'

Default: ''

Specify options that are specific to your application and the simulator you are using. For
example, if you must use the 1076–1993 VHDL compiler, specify the flag -93.

Usage Notes

The flags you specify with this option are added to the compilation command in
generated compilation scripts. The simulation command string is specified by the
HDLCompileVHDLCmd or HDLCompileVerilogCmd properties.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 SplitArchFilePostfix

3-133

SplitArchFilePostfix
Specify string to append to specified name to form name of file containing model VHDL
architecture

Settings

'string'

Default: '_arch'.

This option applies only if you direct HDL Coder to place the generated VHDL entity and
architecture code in separate files.

Usage Notes

The option applies only if you direct HDL Coder to place the filter's entity and
architecture in separate files.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

SplitEntityArch, SplitEntityFilePostfix

3 Properties — Alphabetical List

3-134

SplitEntityArch
Specify whether generated VHDL entity and architecture code is written to single VHDL
file or to separate files

Settings
'on'

Selected

Write the generated VHDL code to a single file.

'off'(default)

Cleared (default)

Write the code for the generated VHDL entity and architecture to separate files.

The names of the entity and architecture files derive from the base file name (as specified
by the generating model or subsystem name). By default, postfix strings identifying the
file as an entity (_entity) or architecture (_arch) are appended to the base file name.
You can override the default and specify your own postfix string.

For example, instead of all generated code residing in MyFIR.vhd, you can specify that
the code reside in MyFIR_entity.vhd and MyFIR_arch.vhd.

Note: This property is specific to VHDL code generation. It does not apply to Verilog code
generation and should not be enabled when generating Verilog code.

Set or View This Property
To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
SplitArchFilePostfix, SplitEntityFilePostfix

 SplitEntityFilePostfix

3-135

SplitEntityFilePostfix
Specify string to append to specified model name to form name of generated VHDL entity
file

Settings

'string'

Default: '_entity'

This option applies only if you direct HDL Coder to place the generated VHDL entity and
architecture code in separate files.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

SplitArchFilePostfix, SplitEntityArch

3 Properties — Alphabetical List

3-136

SynthesisTool
Specify synthesis tool

Settings

'' (default)

If you do not specify a synthesis tool, the default is ''.

'Altera Quartus II'

Specify Altera Quartus II as your synthesis tool.

'Xilinx ISE'

Specify Xilinx ISE as your synthesis tool.

'Xilinx Vivado'

Specify Xilinx Vivado as your synthesis tool.

Usage

To specify Altera Quartus II as the synthesis tool for a DUT subsystem, myDUT:

hdlset_param (myDUT, 'SynthesisTool', 'Altera Quartus II')

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Properties
SynthesisToolDeviceName | SynthesisToolPackageName |
SynthesisToolSpeedValue

 SynthesisToolChipFamily

3-137

SynthesisToolChipFamily
Specify target device chip family name

Settings

'string'

Default: ''

Specify the target device chip family name for your model.

To find the chip family name for your target device:

1 At the MATLAB command line, enter:

 hdlcoder.supportedDevices

2 Open the linked report and find your target device details.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Functions
hdlcoder.supportedDevices

Properties
SynthesisToolDeviceName | SynthesisToolPackageName |
SynthesisToolSpeedValue

3 Properties — Alphabetical List

3-138

SynthesisToolDeviceName
Specify target device name

Settings

'string'

Default: ''

Specify the target device name for your model.

To find the name for your target device:

1 At the MATLAB command line, enter:

 hdlcoder.supportedDevices

2 Open the linked report and find your target device details.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Functions
hdlcoder.supportedDevices

Properties
SynthesisToolChipFamily | SynthesisToolPackageName |
SynthesisToolSpeedValue

 SynthesisToolPackageName

3-139

SynthesisToolPackageName
Specify target device package name

Settings

'string'

Default: ''

Specify the target device package name for your model.

To find the package name for your target device:

1 At the MATLAB command line, enter:

 hdlcoder.supportedDevices

2 Open the linked report and find your target device details.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Functions
hdlcoder.supportedDevices

Properties
SynthesisToolChipFamily | SynthesisToolDeviceName |
SynthesisToolSpeedValue

3 Properties — Alphabetical List

3-140

SynthesisToolSpeedValue
Specify target device speed value

Settings

'string'

Default: ''

Specify the target device speed value for your model.

To find the speed value for your target device:

1 At the MATLAB command line, enter:

 hdlcoder.supportedDevices

2 Open the linked report and find your target device details.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Functions
hdlcoder.supportedDevices

Properties
SynthesisToolChipFamily | SynthesisToolDeviceName |
SynthesisToolPackageName

 TargetDirectory

3-141

TargetDirectory
Identify folder into which HDL Coder writes generated output files

Settings

'string'

Default: 'hdlsrc'

Specify a subfolder under the current working folder into which HDL Coder writes
generated files. The string can specify a complete path name.

If the target folder does not exist, the coder creates it.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

VerilogFileExtension, VHDLFileExtension

3 Properties — Alphabetical List

3-142

TargetLanguage
Specify HDL language to use for generated code

Settings

'VHDL' (default)

VHDL (default)

Generate VHDL code.

'Verilog'

Verilog

Generate Verilog code.

The generated HDL code complies with the following standards:

• VHDL-1993 (IEEE® 1076-1993) or later
• Verilog-2001 (IEEE 1364-2001) or later

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 TestBenchClockEnableDelay

3-143

TestBenchClockEnableDelay

Define elapsed time in clock cycles between deassertion of reset and assertion of clock
enable

Settings

N (integer number of clock cycles)

Default: 1

The TestBenchClockEnableDelay property specifies a delay time N, expressed
in base-rate clock cycles (the default value is 1) elapsed between the time the
reset signal is deasserted and the time the clock enable signal is first asserted.
TestBenchClockEnableDelay works in conjunction with the HoldTime property; after
deassertion of reset, the clock enable goes high after a delay of N base-rate clock cycles
plus the delay specified by HoldTime.

In the figure below, the reset signal (active-high) deasserts after the interval labelled
Hold Time. The clock enable asserts after a further interval labelled Clock enable
delay.

3 Properties — Alphabetical List

3-144

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

HoldTime, ResetLength

 TestBenchDataPostFix

3-145

TestBenchDataPostFix
Specify suffix added to test bench data file name when generating multifile test bench

Settings

'string'

Default: '_data'.

HDL Coder applies TestBenchDataPostFix only when generating a multi-file test
bench (i.e. when MultifileTestBench is 'on').

For example, if the name of your DUT is my_test, and TestBenchPostFix has the
default value _tb, the coder adds the postfix _data to form the test bench data file name
my_test_tb_data.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MultifileTestBench, TestBenchPostFix

3 Properties — Alphabetical List

3-146

TestBenchPostFix
Specify suffix to test bench name

Settings

'string'

Default: '_tb'.

For example, if the name of your DUT is my_test, HDL Coder adds the postfix _tb to
form the name my_test_tb.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

MultifileTestBench, TestBenchDataPostFix

 TimingControllerArch

3-147

TimingControllerArch
Generate reset for timing controller

Settings

'resettable'

Generate a reset for the timing controller. If you select this option, the ClockInputs
property value must be 'Single'.

'default' (default)

Do not generate a reset for the timing controller.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

Properties
ClockInputs

Related Examples
• “Generate Reset for Timing Controller”

3 Properties — Alphabetical List

3-148

TimingControllerPostfix
Specify suffix appended to DUT name to form timing controller name

Settings

'string'

Default: '_tc'.

A timing controller code file is generated if required by the design, for example:

• When code is generated for a multirate model.
• When an area or speed optimization, or block architecture, introduces local multirate.

The timing controller name is based on the name of the DUT. For example, if the name
of your DUT is my_test, by default, HDL Coder adds the postfix _tc to form the timing
controller name, my_test_tc.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

OptimizeTimingController, “Code Generation from Multirate Models”

 TestBenchReferencePostFix

3-149

TestBenchReferencePostFix
Specify string appended to names of reference signals generated in test bench code

Settings

'string'

Default: '_ref'.

Reference signal data is represented as arrays in the generated test bench code. The
string specified by TestBenchReferencePostFix is appended to the generated signal
names.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-150

Traceability
Enable or disable creation of HTML code generation report with code-to-model and
model-to-code hyperlinks

Settings

'on'

Create and display an HTML code generation report.

'off' (default)

Do not create an HTML code generation report.

Usage Notes

You can use the RequirementComments property to generate hyperlinked requirements
comments within the HTML code generation report. The requirements comments link to
the corresponding requirements documents for your model.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

“ Create and Use Code Generation Reports”, “Generate Code with Annotations or
Comments”, RequirementComments

 TriggerAsClock

3-151

TriggerAsClock
Use trigger signal in triggered subsystem as a clock

Settings

'on'

For triggered subsystems, use the trigger input signal as a clock in the generated HDL
code.

'off' (default)

For triggered subsystems, do not use the trigger input signal as a clock in the generated
HDL code.

Usage Example

Use hdlset_param or makehdl to set this property.

For example, to generate HDL code that uses the trigger signal as clock for triggered
subsystems within the sfir_fixed/symmetric_fir DUT subsystem, enter:

makehdl ('sfir_fixed/symmetric_sfir','TriggerAsClock','on')

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

More About
• “Use Trigger As Clock in Triggered Subsystems”

3 Properties — Alphabetical List

3-152

UseAggregatesForConst
Specify whether constants are represented by aggregates, including constants that are
less than 32 bits

Settings

'on'

Selected

Specify that constants, including constants that are less than 32 bits, be represented by
aggregates. The following VHDL code show a scalar less than 32 bits represented as an
aggregate:
GainFactor_gainparam <= (14 => '1', OTHERS => '0');

'off' (default)

Cleared(default)

Specify that HDL Coder represent constants less than 32 bits as scalars and constants
greater than or equal to 32 bits as aggregates. The following VHDL code was generated
by default for a value less than 32 bits:

GainFactor_gainparam <= to_signed(16384, 16);

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling, SafeZeroConcat, UseRisingEdge

 UseFileIOInTestBench

3-153

UseFileIOInTestBench
Specify whether to use data files for reading and writing test bench stimulus and
reference data

Settings

'on'

Selected

Create and use data files for reading and writing test bench stimulus and reference data.

'off' (default)

Cleared(default)

Generated test bench contains stimulus and reference data as constants.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-154

UserComment
Specify comment line in header of generated HDL and test bench files

Settings

'string'

The comment is generated in each of the generated code and test bench files. The code
generator adds leading comment characters for the target language. When newlines or
line feeds are included in the string, the code generator emits single-line comments for
each newline.

For example, the following makehdl command adds two comment lines to the header in a
generated VHDL file.

makehdl(gcb,'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for subsystem symmetric_fir would appear as
follows:

-- ---

--

-- Module: symmetric_fir

-- Simulink Path: sfir_fixed/symmetric_fir

-- Created: 2006-11-20 15:55:25

-- Hierarchy Level: 0

--

-- This is a comment line.

-- This is a second line.

--

-- Simulink model description for sfir_fixed:

 -- This model shows how to use HDL Coder to check, generate,

 -- and verify HDL for a fixed-point symmetric FIR filter.

--

-- ---

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 UseRisingEdge

3-155

UseRisingEdge
Specify VHDL coding style used to detect clock transitions

Settings

'on'

Selected

Generated code uses the VHDL rising_edge or falling_edge function to detect clock
transitions.

For example, the following code, generated from a Unit Delay block, uses rising_edge
to detect positive clock transitions:

Unit_Delay1_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay1_out1 <= (OTHERS => '0');

 ELSIF rising_edge(clk) THEN

 IF clk_enable = '1' THEN

 Unit_Delay1_out1 <= signed(x_in);

 END IF;

 END IF;

 END PROCESS Unit_Delay1_process;

'off' (default)

Cleared (default)

Generated code uses the 'event syntax.

For example, the following code, generated from a Unit Delay block, uses clk'event
AND clk = '1' to detect positive clock transitions:

Unit_Delay1_process : PROCESS (clk, reset)

 BEGIN

 IF reset = '1' THEN

 Unit_Delay1_out1 <= (OTHERS => '0');

 ELSIF clk'event AND clk = '1' THEN

 IF clk_enable = '1' THEN

 Unit_Delay1_out1 <= signed(x_in);

3 Properties — Alphabetical List

3-156

 END IF;

 END IF;

 END PROCESS Unit_Delay1_process;

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling, SafeZeroConcat, UseAggregatesForConst

 UseSingleLibrary

3-157

UseSingleLibrary
Specify whether VHDL code generated for model references is in a single library, or in
separate libraries

Settings

'on'

Selected

Generate VHDL code for model references into a single library.

'off' (default)

Cleared (default)

For each model reference, generate a separate VHDL library.

Note: This property is specific to VHDL code generation. It does not apply to Verilog code
generation and should not be enabled when generating Verilog code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
VHDLLibraryName

3 Properties — Alphabetical List

3-158

UseVerilogTimescale
Use compiler `timescale directives in generated Verilog code

Settings

'on' (default)

Selected (default)

Use compiler `timescale directives in generated Verilog code.

'off'

Cleared

Suppress the use of compiler `timescale directives in generated Verilog code.

Usage Notes

The `timescale directive provides a way of specifying different delay values for
multiple modules in a Verilog file. This setting does not affect the generated test bench.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

LoopUnrolling, SafeZeroConcat, UseAggregatesForConst, UseRisingEdge

 VectorPrefix

3-159

VectorPrefix
Specify string prefixed to vector names in generated code

Settings

'string'

Default: 'vector_of_'

Specify a string to be prefixed to vector names in generated code.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-160

Verbosity
Specify level of detail for messages displayed during code generation

Settings

Default: 1

0

When Verbosity is set to 0, code generation progress messages are not displayed as
code generation proceeds. When Verbosity is set to 1, more detailed progress messages
are displayed.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 VerilogFileExtension

3-161

VerilogFileExtension
Specify file type extension for generated Verilog files

Settings

'string'

The default file type extension for generated Verilog files is .v.

See Also

TargetLanguage

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

3 Properties — Alphabetical List

3-162

VHDLArchitectureName
Specify architecture name for generated HDL code

Settings

'string'

The default architecture name is 'rtl'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

 VHDLFileExtension

3-163

VHDLFileExtension
Specify file type extension for generated VHDL files

Settings

'string'

The default file type extension for generated VHDL files is .vhd.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also

TargetLanguage

3 Properties — Alphabetical List

3-164

VHDLLibraryName
Specify name of target library for generated HDL code

Settings

'string'

The default target library name is 'work'.

Set or View This Property

To set this property, use hdlset_param or makehdl. To view the property value, use
hdlget_param.

See Also
HDLCompileInit | UseSingleLibrary

4

Class reference for HDL code
generation from Simulink

4 Class reference for HDL code generation from Simulink

4-2

hdlcoder.OptimizationConfig class
Package: hdlcoder

hdlcoder.optimizeDesign configuration object

Description

Use the hdlcoder.OptimizationConfig object to set options for the
hdlcoder.optimizeDesign function.

Maximum Clock Frequency Configuration

To configure hdlcoder.optimizeDesign to maximize the clock frequency of your
design:

• Set ExplorationMode to
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency.

• Set ResumptionPoint to the default, ''.

You can optionally set IterationLimit and TestbenchGeneration to nondefault values.
HDL Coder ignores the TargetFrequency setting.

Target Clock Frequency Configuration

To configure hdlcoder.optimizeDesign to meet a target clock frequency:

• Set ExplorationMode to
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency.

• Set TargetFrequency to your target clock frequency.
• Set ResumptionPoint to the default, ''

You can optionally set IterationLimit and TestbenchGeneration to nondefault values.

Resume From Interruption Configuration

To configure hdlcoder.optimizeDesign to resume after an interruption, specify
ResumptionPoint.

 hdlcoder.OptimizationConfig class

4-3

When you set ResumptionPoint to a nondefault value, the other properties are ignored.

Construction

optimcfg = hdlcoder.OptimizationConfig creates an
hdlcoder.OptimizationConfig object for automatic iterative HDL design
optimization.

Properties

ExplorationMode — Optimization target mode
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency (default) |
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency

Optimization target mode, specified as one of these values:

Optimizes the design to try to achieve the
maximum clock frequency

hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency

hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency

is the default.
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequencyOptimizes the design to try to achieve the

specified target clock frequency

IterationLimit — Maximum number of iterations
1 (default) | positive integer

Maximum number of optimization iterations before exiting, specified as a positive
integer.

If ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.BestFrequency, HDL Coder
runs this number of iterations.

If ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency, HDL Coder
runs the number of iterations needed to meet the target frequency. Otherwise, the coder
runs the maximum number of iterations.

4 Class reference for HDL code generation from Simulink

4-4

ResumptionPoint — Folder containing optimization data from earlier iteration
'' (default) | string

Name of folder that contains previously-generated optimization iteration data, specified
as a string. The folder is a subfolder of hdlexpl, and the folder name begins with the
string, Iter.

When you set ResumptionPoint to a nondefault value, hdlcoder.optimizeDesign
ignores the other configuration object properties.
Example: 'Iter1-26-Sep-2013-10-19-13'

TargetFrequency — Target clock frequency
Inf (default) | double

Target clock frequency, specified as a double in MHz. Specify when ExplorationMode is
hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency.

Examples

Configure hdlcoder.optimizeDesign for maximum clock frequency

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Save your model.

 hdlcoder.OptimizationConfig class

4-5

You must save your model if you want to regenerate code later without rerunning
the iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Set the iteration limit to 10.

oc.IterationLimit = 10;

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66 Iteration 1

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72 Iteration 2

Generate and synthesize HDL code ...

(CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22 Iteration 3

Generate and synthesize HDL code ...

(CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37 Iteration 4

Generate and synthesize HDL code ...

(CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04 Iteration 5

Generate and synthesize HDL code ...

Exiting because critical path cannot be further improved.

Summary report: summary.html

Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s

Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66

Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72

Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22

Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37

Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04

Final results are saved in

4 Class reference for HDL code generation from Simulink

4-6

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-04-41

Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after five iterations because the fourth and fifth iterations had
the same critical path, which indicates that the coder has found the minimum critical
path. The design’s maximum clock frequency after optimization is 1 / 9.55 ns, or 104.71
MHz.

Configure hdlcoder.optimizeDesign for target clock frequency

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

Disable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','off');

Save your model.

You must save your model if you want to regenerate code later without rerunning
the iterative optimizations, or resume your run if it is interrupted. When you use
hdlcoder.optimizeDesign to regenerate code or resume an interrupted run, HDL
Coder checks the model checksum and generates an error if the model has changed.

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to stop after it reaches a clock frequency
of 50MHz, or 10 iterations, whichever comes first.

oc.ExplorationMode = ...

 hdlcoder.OptimizationConfig.ExplorationMode.TargetFrequency;

oc.TargetFrequency = 50;

 hdlcoder.OptimizationConfig class

4-7

oc.IterationLimit = 10; =

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'GenerateHDLTestBench', 'off');

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Iteration 0

Generate and synthesize HDL code ...

(CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02 Iteration 1

Generate and synthesize HDL code ...

Exiting because constraint (20.00 ns) has been met (16.26 ns).

Summary report: summary.html

Achieved Critical Path (CP) Latency : 16.26 ns Elapsed : 134.02 s

Iteration 0: (CP ns) 16.26 (Constraint ns) 20.00 (Elapsed s) 134.02

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-14

Validation model: gm_sfir_fixed_vnl

Then HDL Coder stops after one iteration because it has achieved the target clock
frequency. The critical path is 16.26 ns, a clock frequency of 61.50 GHz.

Configure hdlcoder.optimizeDesign to resume from interruption

Open the model and specify the DUT subsystem.

model = 'sfir_fixed';

dutSubsys = 'symmetric_fir';

open_system(model);

hdlset_param(model,'HDLSubsystem',[model,'/',dutSubsys]);

Set your synthesis tool and target device options to the same values as in the interrupted
run.

hdlset_param (model,'SynthesisTool','Xilinx ISE', ...

 'SynthesisToolChipFamily','Zynq', ...

 'SynthesisToolDeviceName','xc7z030', ...

 'SynthesisToolPackageName','fbg484', ...

 'SynthesisToolSpeedValue','-3')

4 Class reference for HDL code generation from Simulink

4-8

Enable HDL test bench generation.

hdlset_param(model,'GenerateHDLTestBench','on');

Create an optimization configuration object, oc.

oc = hdlcoder.OptimizationConfig;

Configure the automatic iterative optimization to run using data from the first iteration
of a previous run.

oc.ResumptionPoint = 'Iter5-07-Jan-2014-17-04-29';

Optimize the model.

hdlcoder.optimizeDesign(model,oc)

hdlset_param('sfir_fixed', 'HDLSubsystem', 'sfir_fixed/symmetric_fir');

hdlset_param('sfir_fixed', 'SynthesisTool', 'Xilinx ISE');

hdlset_param('sfir_fixed', 'SynthesisToolChipFamily', 'Zynq');

hdlset_param('sfir_fixed', 'SynthesisToolDeviceName', 'xc7z030');

hdlset_param('sfir_fixed', 'SynthesisToolPackageName', 'fbg484');

hdlset_param('sfir_fixed', 'SynthesisToolSpeedValue', '-3');

Try to resume from resumption point: Iter5-07-Jan-2014-17-04-29

Iteration 5

Generate and synthesize HDL code ...

Exiting because critical path cannot be further improved.

Summary report: summary.html

Achieved Critical Path (CP) Latency : 9.55 ns Elapsed : 741.04 s

Iteration 0: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 143.66

Iteration 1: (CP ns) 16.26 (Constraint ns) 5.85 (Elapsed s) 278.72

Iteration 2: (CP ns) 10.25 (Constraint ns) 12.73 (Elapsed s) 427.22

Iteration 3: (CP ns) 9.55 (Constraint ns) 9.73 (Elapsed s) 584.37

Iteration 4: (CP ns) 9.55 (Constraint ns) 9.38 (Elapsed s) 741.04

Final results are saved in

 /tmp/hdlsrc/sfir_fixed/hdlexpl/Final-07-Jan-2014-17-07-30

Validation model: gm_sfir_fixed_vnl

Then coder stops after one additional iteration because it has achieved the target clock
frequency. The critical path is 9.55 ns, or a clock frequency of 104.71 MHz.

See Also
hdlcoder.optimizeDesign

5

Function Reference for HDL Code
Generation from MATLAB

5 Function Reference for HDL Code Generation from MATLAB

5-2

codegen

Generate HDL code from MATLAB code

Syntax

codegen -config hdlcfg matlab_design_name

codegen -config hdlcfg -float2fixed fixptcfg matlab_design_name

Description

codegen -config hdlcfg matlab_design_name generates HDL code from
MATLAB code.

codegen -config hdlcfg -float2fixed fixptcfg matlab_design_name

converts floating-point MATLAB code to fixed-point code, then generates HDL code.

Examples

Generate Verilog Code from MATLAB Code

Create a coder.HdlConfig object, hdlcfg.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the target language to Verilog.

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL code from your MATLAB design. In this example, the MATLAB design
function name is mlhdlc_dti.

 codegen

5-3

codegen -config hdlcfg mlhdlc_dti

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In
this example, the MATLAB design function name is mlhdlc_dti.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

• “Generate HDL Code from MATLAB Code Using the Command Line Interface”

Input Arguments

hdlcfg — HDL code generation configuration
coder.HdlConfig

HDL code generation configuration options, specified as a coder.HdlConfig object.

Create a coder.HdlConfig object using the HDL coder.config function.

matlab_design_name — MATLAB design function name
string

Name of top-level MATLAB function for which you want to generate HDL code.

fixptcfg — Floating-point to fixed-point conversion configuration
coder.FixptConfig

Floating-point to fixed-point conversion configuration options, specified as a
coder.FixptConfig object.

5 Function Reference for HDL Code Generation from MATLAB

5-4

Use fixptcfg when generating HDL code from floating-point MATLAB code. Create a
coder.FixptConfig object using the HDL coder.config function.

See Also
coder.config | coder.FixptConfig | coder.HdlConfig

 coder.approximation

5-5

coder.approximation
Create function replacement configuration object

Syntax
q = coder.approximation(function_name)

q = coder.approximation('Function',function_name,Name,Value)

Description
q = coder.approximation(function_name) creates a function replacement
configuration object for use during code generation or fixed-point conversion. The
configuration object specifies how to create a lookup table approximation for the
MATLAB function specified by function_name. To associate this approximation
with a coder.FixptConfig object for use with thecodegen function, use the
coder.FixptConfig configuration object addApproximation method.

Use this syntax only for the functions that coder.approximation can replace
automatically. These functions are listed in the function_name argument description.

q = coder.approximation('Function',function_name,Name,Value) creates
a function replacement configuration object using additional options specified by one or
more name-value pair arguments.

Examples
Replace log Function with Default Lookup Table

Create a function replacement configuration object using the default settings. The
resulting lookup table in the generated code uses 1000 points.

logAppx = coder.approximation('log');

Replace log Function with Uniform Lookup Table

Create a function replacement configuration object. Specify the input range and prefix to
add to the replacement function name. The resulting lookup table in the generated code
uses 1000 points.

5 Function Reference for HDL Code Generation from MATLAB

5-6

logAppx = coder.approximation('Function','log','InputRange',[0.1,1000],...

'FunctionNamePrefix','log_replace_');

Replace log Function with Optimized Lookup Table

Create a function replacement configuration object using the 'OptimizeLUTSize'
option to specify to replace the log function with an optimized lookup table. The
resulting lookup table in the generated code uses less than the default number of points.

 logAppx = coder.approximation('Function','log','OptimizeLUTSize', true,...

'InputRange',[0.1,1000],'InterpolationDegree',1,'ErrorThreshold',1e-3,...

'FunctionNamePrefix','log_optim_','OptimizeIterations',25);

Replace Custom Function with Optimized Lookup Table

Create a function replacement configuration object that specifies to replace the custom
function, saturateExp, with an optimized lookup table.

Create a custom function, saturateExp.

saturateExp = @(x) 1/(1+exp(-x));

Create a function replacement configuration object that specifies to replace the
saturateExp function with an optimized lookup table. Because the saturateExp
function is not listed as a function for which coder.approximation can generate an
approximation automatically, you must specify the CandidateFunction property.

saturateExp = @(x) 1/(1+exp(-x));

custAppx = coder.approximation('Function','saturateExp',...

'CandidateFunction', saturateExp,...

'NumberOfPoints',50,'InputRange',[0,10]);

• “Replace the exp Function with a Lookup Table”
• “Replace a Custom Function with a Lookup Table”

Input Arguments

function_name — Name of the function to replace
'acos' | 'acosd' | 'acosh' | 'acoth' | 'asin' | 'asind' | 'asinh' |
'atan' | 'atand' | 'atanh' | 'cos' | 'cosd' | 'cosh' | 'erf ' | 'erfc'

 coder.approximation

5-7

| 'exp' | 'log' | 'normcdf' | 'reallog' | 'realsqrt' | 'reciprocal' |
'rsqrt' | 'sin' | 'sinc' | 'sind' | 'sinh' | 'sqrt' | 'tan' | 'tand'

Name of function to replace, specified as a string. The function must be one of the listed
functions.
Example: 'sqrt'

Data Types: char

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Function', 'log'

'Architecture' — Architecture of lookup table approximation
'LookupTable' (default) | 'Flat'

Architecture of the lookup table approximation, specified as the comma-separated
pair consisting of 'Architecture' and a string. Use this argument when you want
to specify the architecture for the lookup table. The Flat architecture does not use
interpolation.
Data Types: char

'CandidateFunction' — Function handle of the replacement function
function handle | string

Function handle of the replacement function, specified as the comma-separated pair
consisting of 'CandidateFunction' and a function handle or string referring to
a function handle. Use this argument when the function that you want to replace is
not listed under function_name. Specify the function handle or string referring to a
function handle of the function that you want to replace. You can define the function in a
file or as an anonymous function.

If you do not specify a candidate function, then the function you chose to replace using
the Function property is set as the CandidateFunction.

Example: 'CandidateFunction', @(x) (1./(1+x))

5 Function Reference for HDL Code Generation from MATLAB

5-8

Data Types: function_handle | char

'ErrorThreshold' — Error threshold value used to calculate optimal lookup table size
0.001 (default) | nonnegative scalar

Error threshold value used to calculate optimal lookup table size, specified as the
comma-separated pair consisting of 'ErrorThreshold' and a nonnegative scalar. If
'OptimizeLUTSize' is true, this argument is required.

'Function' — Name of function to replace with a lookup table approximation
function_name

Name of function to replace with a lookup table approximation, specified as the comma-
separated pair consisting of 'Function' and a string. The function must be continuous
and stateless. If you specify one of the functions that is listed under function_name,
the conversion process automatically provides a replacement function. Otherwise, you
must also specify the 'CandidateFunction' argument for the function that you want
to replace.

Example: 'Function','log'

Example: 'Function', 'my_log',‘CandidateFunction’,@my_log

Data Types: char

'FunctionNamePrefix' — Prefix for generated fixed-point function names
'replacement_' (default) | string

Prefix for generated fixed-point function names, specified as the comma-separated pair
consisting of 'FunctionNamePrefix' and a string. The name of a generated function
consists of this prefix, followed by the original MATLAB function name.
Example: ‘log_replace_’

'InputRange' — Range over which to replace the function
[] (default) | 2x1 row vector | 2xN matrix

Range over which to replace the function, specified as the comma-separated pair
consisting of 'InputRange' and a 2-by-1 row vector or a 2-by-N matrix.

Example: [-1 1]

'InterpolationDegree' — Interpolation degree
1 (default) | 0 | 2 | 3

 coder.approximation

5-9

Interpolation degree, specified as the comma-separated pair consisting of
'InterpolationDegree' and1 (linear), 0 (none), 2 (quadratic), or 3 (cubic).

'NumberOfPoints' — Number of points in lookup table
1000 (default) | positive integer

Number of points in lookup table, specified as the comma-separated pair consisting of
'NumberOfPoints' and a positive integer.

'OptimizeIterations' — Number of iterations
25 (default) | positive integer

Number of iterations to run when optimizing the size of the lookup table, specified as the
comma-separated pair consisting of 'OptimizeIterations' and a positive integer.

'OptimizeLUTSize' — Optimize lookup table size
false (default) | true

Optimize lookup table size, specified as the comma-separated pair consisting of
'OptimizeLUTSize' and a logical value. Setting this property to true generates an
area-optimal lookup table, that is, the lookup table with the minimum possible number of
points. This lookup table is optimized for size, but might not be speed efficient.

'PipelinedArchitecture' — Option to enable pipelining
false (default) | true

Option to enable pipelining, specified as the comma-separated pair consisting of
'PipelinedArchitecture' and a logical value.

Output Arguments

q — Function replacement configuration object, returned as a
coder.mathfcngenerator.LookupTable or a coder.mathfcngenerator.Flat
configuration object
coder.mathfcngenerator.LookupTable configuration object |
coder.mathfcngenerator.Flat configuration object

Function replacement configuration object. Use the coder.FixptConfig configuration
object addApproximation method to associate this configuration object with a
coder.FixptConfig object. Then use the codegen function -float2fixed option with
coder.FixptConfig to convert floating-point MATLAB code to fixed-point code.

5 Function Reference for HDL Code Generation from MATLAB

5-10

Property Default Value

Auto-replace function ''

InputRange []

FunctionNamePrefix 'replacement_'

Architecture LookupTable (read only)
NumberOfPoints 1000

InterpolationDegree 1

ErrorThreshold 0.001

OptimizeLUTSize false

OptimizeIterations 25

More About
• “Replacing Functions Using Lookup Table Approximations”

See Also

Classes
coder.FixptConfig

Functions
codegen

 coder.config

5-11

coder.config

Create HDL Coder code generation configuration objects

Syntax

config_obj = coder.config('hdl')

config_obj = coder.config('fixpt')

Description

config_obj = coder.config('hdl') creates a coder.HdlConfig configuration
object for use with the HDL codegen function when generating HDL code from
MATLAB code.

config_obj = coder.config('fixpt') creates a coder.FixptConfig
configuration object for use with the HDL codegen function when generating HDL
code from floating-point MATLAB code. The coder.FixptConfig object configures the
floating-point to fixed-point conversion.

Examples

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

5 Function Reference for HDL Code Generation from MATLAB

5-12

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In
this example, the MATLAB design function name is mlhdlc_dti.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

• “Generate HDL Code from MATLAB Code Using the Command Line Interface”

See Also
codegen | coder.FixptConfig | coder.HdlConfig

 addDesignRangeSpecification

5-13

addDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Add design range specification to parameter

Syntax

addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

Description

addDesignRangeSpecification(fcnName,paramName,designMin, designMax)

specifies the minimum and maximum values allowed for the parameter, paramName, in
function, fcnName. The fixed-point conversion process uses this design range information
to derive ranges for downstream variables in the code.

Input Arguments

fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

designMin — Minimum value allowed for this parameter
scalar

Minimum value allowed for this parameter, specified as a scalar double.

5 Function Reference for HDL Code Generation from MATLAB

5-14

Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

 addFunctionReplacement

5-15

addFunctionReplacement
Class: coder.FixptConfig
Package: coder

Replace floating-point function with fixed-point function during fixed-point conversion

Syntax
addFunctionReplacement(floatFn,fixedFn)

Description
addFunctionReplacement(floatFn,fixedFn) specifies a function replacement in a
coder.FixptConfig object. During floating-point to fixed-point conversion in the HDL
code generation workflow, the conversion process replaces the specified floating-point
function with the specified fixed-point function. The fixed-point function must be in the
same folder as the floating-point function or on the MATLAB path.

Input Arguments

floatFn — Name of floating-point function
'' (default) | string

Name of floating-point function, specified as a string.

fixedFn — Name of fixed-point function
'' (default) | string

Name of fixed-point function, specified as a string.

Examples

Specify Function Replacement in Fixed-Point Conversion Configuration Object

Create a fixed-point code configuration object, fxpCfg, with a test bench,
myTestbenchName.

5 Function Reference for HDL Code Generation from MATLAB

5-16

fxpCfg = coder.config('fixpt');

fxpCfg.TestBenchName = 'myTestbenchName';

fxpCfg.addFunctionReplacement('min', 'fi_min');

codegen -float2fixed fxpCfg designName

Specify that the floating-point function, min, should be replaced with the fixed-point
function, fi_min.

fxpCfg.addFunctionReplacement('min', 'fi_min');

When you generate code, the code generation software replaces instances of min with
fi_min during floating-point to fixed-point conversion.

Alternatives

You can specify function replacements in the HDL Workflow Advisor. See “Function
Replacements”.

See Also
codegen | coder.config | coder.FixptConfig

 clearDesignRangeSpecifications

5-17

clearDesignRangeSpecifications
Class: coder.FixptConfig
Package: coder

Clear all design range specifications

Syntax

clearDesignRangeSpecifications()

Description

clearDesignRangeSpecifications() clears all design range specifications.

Examples

Clear a Design Range Specification

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true;

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

% Now remove the design range

cfg.clearDesignRangeSpecifications()

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

5 Function Reference for HDL Code Generation from MATLAB

5-18

getDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Get design range specifications for parameter

Syntax
[designMin, designMax] = getDesignRangeSpecification(fcnName,

paramName)

Description
[designMin, designMax] = getDesignRangeSpecification(fcnName,

paramName) gets the minimum and maximum values specified for the parameter,
paramName, in function, fcnName.

Input Arguments
fcnName — Function name
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Output Arguments
designMin — Minimum value allowed for this parameter
scalar

 getDesignRangeSpecification

5-19

Minimum value allowed for this parameter, specified as a scalar double.
Data Types: double

designMax — Maximum value allowed for this parameter
scalar

Maximum value allowed for this parameter, specified as a scalar double.
Data Types: double

Examples

Get Design Range Specifications

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true;

% Get the design range for the 'dti' function parameter 'u_in'

[designMin, designMax] = cfg.getDesignRangeSpecification('dti','u_in')

designMin =

 -1

designMax =

 1

5 Function Reference for HDL Code Generation from MATLAB

5-20

hasDesignRangeSpecification

Class: coder.FixptConfig
Package: coder

Determine whether parameter has design range

Syntax

hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

Description

hasDesignRange = hasDesignRangeSpecification(fcnName,paramName)

returns true if the parameter, param_name in function, fcn, has a design range
specified.

Input Arguments

fcnName — Name of function
string

Function name, specified as a string.
Example: ‘dti’
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Example: ‘dti’
Data Types: char

 hasDesignRangeSpecification

5-21

Output Arguments

hasDesignRange — Parameter has design range
true | false

Parameter has design range, returned as a boolean.
Data Types: logical

Examples

Verify That a Parameter Has a Design Range Specification

% Set up the fixed-point configuration object

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0);

cfg.ComputeDerivedRanges = true;

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

hasDesignRanges =

 1

5 Function Reference for HDL Code Generation from MATLAB

5-22

removeDesignRangeSpecification
Class: coder.FixptConfig
Package: coder

Remove design range specification from parameter

Syntax

removeDesignRangeSpecification(fcnName,paramName)

Description

removeDesignRangeSpecification(fcnName,paramName) removes the design
range information specified for parameter, paramName, in function, fcnName.

Input Arguments

fcnName — Name of function
string

Function name, specified as a string.
Data Types: char

paramName — Parameter name
string

Parameter name, specified as a string.
Data Types: char

Examples

Remove Design Range Specifications

% Set up the fixed-point configuration object

 removeDesignRangeSpecification

5-23

cfg = coder.config('fixpt');

cfg.TestBenchName = 'dti_test';

cfg.addDesignRangeSpecification('dti', 'u_in', -1.0, 1.0)

cfg.ComputeDerivedRanges = true;

% Verify that the 'dti' function parameter 'u_in' has design range

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

% Now clear the design ranges and verify that

% hasDesignRangeSpecification returns false

cfg.removeDesignRangeSpecification('dti', 'u_in')

hasDesignRanges = cfg.hasDesignRangeSpecification('dti','u_in')

6

Class Reference for HDL Code
Generation from MATLAB

6 Class Reference for HDL Code Generation from MATLAB

6-2

coder.FixptConfig class
Package: coder

Floating-point to fixed-point conversion configuration object

Description

A coder.FixptConfig object contains the configuration parameters that the HDL
codegen function requires to convert floating-point MATLAB code to fixed-point
MATLAB code during HDL code generation. Use the -float2fixed option to pass this
object to the codegen function.

Construction

fixptcfg = coder.config('fixpt') creates a coder.FixptConfig object for
floating-point to fixed-point conversion.

Properties

ComputeDerivedRanges

Enable derived range analysis.

Values: true|false (default)

ComputeSimulationRanges

Enable collection and reporting of simulation range data. If you need to run a long
simulation to cover the complete dynamic range of your design, consider disabling
simulation range collection and running derived range analysis instead.

Values: true (default)|false

DefaultFractionLength

Default fixed-point fraction length.

 coder.FixptConfig class

6-3

Values: 4 (default) | positive integer

DefaultSignedness

Default signedness of variables in the generated code.

Values: 'Automatic' (default) | 'Signed' | 'Unsigned'

DefaultWordLength

Default fixed-point word length.

Values: 14 (default) | positive integer

DetectFixptOverflows

Enable detection of overflows using scaled doubles.

Values: true| false (default)

fimath

fimath properties to use for conversion.

Values: fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',
'ProductMode', 'FullPrecision', 'SumMode', 'FullPrecision') (default) |
string

FixPtFileNameSuffix

Suffix for fixed-point file names.

Values: '_fixpt' | string

LaunchNumericTypesReport

View the numeric types report after the software has proposed fixed-point types.

Values: true (default) | false

LogIOForComparisonPlotting

Enable simulation data logging to plot the data differences introduced by fixed-point
conversion.

6 Class Reference for HDL Code Generation from MATLAB

6-4

Values: true (default) | false

OptimizeWholeNumber

Optimize the word lengths of variables whose simulation min/max logs indicate that they
are always whole numbers.

Values: true (default) | false

PlotFunction

Name of function to use for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. This
option takes precedence over PlotWithSimulationDataInspector.

The plot function should accept three inputs:

• A structure that holds the name of the variable and the function that uses it.
• A cell array to hold the logged floating-point values for the variable.
• A cell array to hold the logged values for the variable after fixed-point conversion.

Values: '' (default) | string

PlotWithSimulationDataInspector

Use Simulation Data Inspector for comparison plots.

LogIOForComparisonPlotting must be set to true to enable comparison plotting. The
PlotFunction option takes precedence over PlotWithSimulationDataInspector.

Values: true| false (default)

ProposeFractionLengthsForDefaultWordLength

Propose fixed-point types based on DefaultWordLength.

Values: true (default) | false

ProposeTargetContainerTypes

By default (false), propose data types with the minimum word length needed to represent
the value. When set to true, propose data type with the smallest word length that can

 coder.FixptConfig class

6-5

represent the range and is suitable for C code generation (8,16,32, 64 …). For example,
for a variable with range [0..7], propose a word length of 8 rather than 3.

Values: true| false (default)

ProposeWordLengthsForDefaultFractionLength

Propose fixed-point types based on DefaultFractionLength.

Values: false (default) | true

ProposeTypesUsing

Propose data types based on simulation range data, derived ranges, or both.

Values: 'BothSimulationAndDerivedRanges' (default) |
'SimulationRanges'|'DerivedRanges'

SafetyMargin

Safety margin percentage by which to increase the simulation range when proposing
fixed-point types. The specified safety margin must be a real number greater than -100.

Values: 0 (default) | double

StaticAnalysisQuickMode

Perform faster static analysis.

Values: true | false (default)

StaticAnalysisTimeoutMinutes

Abort analysis if timeout is reached.

Values: '' (default) | positive integer

TestBenchName

Test bench function name or names, specified as a string or cell array of strings. You
must specify at least one test bench.

If you do not explicitly specify input parameter data types, the conversion uses the first
test bench function to infer these data types.

6 Class Reference for HDL Code Generation from MATLAB

6-6

Values: '' (default) | string | cell array of strings

TestNumerics

Enable numerics testing.

Values: true| false (default)

Methods

Examples

Generate HDL Code from Floating-Point MATLAB Code

Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

fixptcfg.TestBenchName = 'mlhdlc_dti_tb';

Create a coder.HdlConfig object, hdlcfg, with default settings.

hdlcfg = coder.config('hdl');

Convert your floating-point MATLAB design to fixed-point, and generate HDL code. In
this example, the MATLAB design function name is mlhdlc_dti.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_dti

• “Generate HDL Code from MATLAB Code Using the Command Line Interface”

Alternatives

You can also generate HDL code from MATLAB code using the HDL Workflow Advisor.
For more information, see “HDL Code Generation from a MATLAB Algorithm”.

 coder.FixptConfig class

6-7

See Also
codegen | coder.config | coder.HdlConfig

6 Class Reference for HDL Code Generation from MATLAB

6-8

coder.HdlConfig class
Package: coder

HDL codegen configuration object

Description

A coder.HdlConfig object contains the configuration parameters that the HDL
codegen function requires to generate HDL code. Use the -config option to pass this
object to the codegen function.

Construction

hdlcfg = coder.config('hdl') creates a coder.HdlConfig object for HDL code
generation.

Properties

Basic

AdderSharingMinimumBitwidth

Minimum bit width for shared adders, specified as a positive integer.

If ShareAdders is true and ResourceSharing is greater than 1, share adders only if
adder bit width is greater than or equal to AdderSharingMinimumBitwidth.

Values: integer greater than or equal to 2

ClockEdge

Specify active clock edge.

Values: 'Rising' (default) | 'Falling'

 coder.HdlConfig class

6-9

DistributedPipeliningPriority

Priority for distributed pipelining algorithm, specified as a string.

DistributedPipeliningPriority Value Description

Numerical Integrity (default) Prioritize numerical integrity when
distributing pipeline registers.

This option uses a conservative retiming
algorithm that does not move registers
across a component if the functional
equivalence to the original design is
unknown.

Performance Prioritize performance over numerical
integrity.

Use this option if your design requires a
higher clock frequency and the MATLAB
behavior does not need to strictly match the
generated code behavior.

This option uses a more aggressive
retiming algorithm that moves registers
across a component even if the modified
design’s functional equivalence to the
original design is unknown.

Values: 'NumericalIntegrity' (default) | 'Performance'

GenerateHDLTestBench

Generate an HDL test bench, specified as a logical.

Values: false (default) | true

HDLCodingStandard

HDL coding standard to follow and check when generating code, specified as a string.
Generates a compliance report showing errors, warnings, and messages.

Values: 'None' (default) | 'Industry'

6 Class Reference for HDL Code Generation from MATLAB

6-10

HDLCodingStandardCustomizations

HDL coding standard rules and report customizations, specified using HDL coding
standard customization Properties. If you want to customize the coding standard rules
and report, you must set HDLCodingStandard to 'Industry'.

Value: HDL coding standard customization object

HDLLintTool

HDL lint tool script to generate, specified as a string.

Values: 'None' (default) | 'AscentLint' | 'Leda' | 'SpyGlass' |'Custom'

HDLLintInit

HDL lint script initialization string.

Value: string

HDLLintCmd

HDL lint script command.

If you set HDLLintTool to Custom, you must use %s as a placeholder for the HDL file
name in the generated Tcl script. Specify HDLLintCmd using the following format:

custom_lint_tool_command -option1 -option2 %s

Value: string

HDLLintTerm

HDL lint script termination string.

Value: string

InitializeBlockRAM

Specify whether to initialize all block RAM to '0' for simulation.

Values: true (default) | false

 coder.HdlConfig class

6-11

InlineConfigurations

Specify whether to include inline configurations in generated VHDL code.

When true, include VHDL configurations in files that instantiate a component.

When false, suppress the generation of configurations and require user-supplied
external configurations. Set to false if you are creating your own VHDL configuration
files.

Values: true (default) | false

LoopOptimization

Loop optimization in generated code, specified as a string. See “Optimize MATLAB
Loops”.

LoopOptimization Value Description

LoopNone (default) Do not optimize loops in generated code.
StreamLoops Stream loops.
UnrollLoops Unroll Loops.

Values: 'LoopNone' (default) | 'StreamLoops' | 'UnrollLoops'

MinimizeClockEnables

Specify whether to omit generation of clock enable logic.

When true, omit generation of clock enable logic wherever possible.

When false, generate clock enable logic.

Values: false (default) | true

MultiplierPartitioningThreshold

Specify maximum bit width for hardware multipliers. If a multiplier is greater than or
equal to this threshold, HDL Coder splits the multiplier into smaller multipliers.

To improve your hardware mapping results, set this threshold to the bit width of the DSP
or multiplier hardware on your target device.

Values: integer greater than or equal to 2

6 Class Reference for HDL Code Generation from MATLAB

6-12

MultiplierSharingMinimumBitwidth

Minimum bit width for shared multipliers, specified as a positive integer.

If ShareMultipliers is true and ResourceSharing is greater than 1,
share multipliers only if multiplier bit width is greater than or equal to
MultiplierSharingMinimumBitwidth.

Values: integer greater than or equal to 2

PartitionFunctions

Generate instantiable HDL code modules from functions.

Note: If you enable PartitionFunctions, UseMatrixTypesInHDL has no effect.

Values: false (default) | true

PreserveDesignDelays

Prevent distributed pipelining from moving design delays or allow distributed pipelining
to move design delays, specified as a logical.

Persistent variables and dsp.Delay System objects are design delays.

Values: false (default) | true

ShareAdders

Share adders, specified as a logical.

If true, share adders when ResourceSharing is greater than 1 and adder bit width is
greater than or equal to AdderSharingMinimumBitwidth.

Values: false (default) | true

ShareMultipliers

Share multipliers, specified as a logical.

If true, share multipliers when ResourceSharing is greater than 1, and multiplier bit
width is greater than or equal to MultiplierSharingMinimumBitwidth.

 coder.HdlConfig class

6-13

Values: true (default) | false

SimulateGeneratedCode

Simulate generated code, specified as a logical.

Values: false (default) | true

SimulationIterationLimit

Maximum number of simulation iterations during test bench generation, specified as an
integer. This property affects only test bench generation, not simulation during fixed-
point conversion.

Values: unlimited (default) | positive integer

SimulationTool

Simulation tool name, specified as a string.

Values: 'ModelSim' (default) | 'ISIM'

SynthesisTool

Synthesis tool name, specified as a string.

Values: 'Xilinx ISE' (default) | 'Altera Quartus II' | 'Xilinx Vivado'

SynthesisToolChipFamily

Synthesis target chip family name, specified as a string.

Values: 'Virtex4' (default) | string

SynthesisToolDeviceName

Synthesis target device name, specified as a string.

Values: 'xc4vsx35' (default) | string

SynthesisToolPackageName

Synthesis target package name, specified as a string.

6 Class Reference for HDL Code Generation from MATLAB

6-14

Values: 'ff668' (default) | string

SynthesisToolSpeedValue

Synthesis target speed, specified as a string.

Values: '-10' (default) | string

SynthesizeGeneratedCode

Synthesize generated code or not, specified as a logical.

Values: false (default) | true

TargetLanguage

Target language, specified as a string.

Values: 'VHDL' (default) | 'Verilog'

TestBenchName

Test bench function name, specified as a string. You must specify a test bench.

Values: '' (default) | string

TimingControllerArch

Timing controller architecture, specified as a string.

TimingControllerArch Value Description

default (default) Do not generate a reset for the timing
controller.

resettable Generate a reset for the timing controller.

Values: 'default' (default) | 'resettable'

TimingControllerPostfix

Postfix to append to design name to form name of timing controller, specified as a string.

Values: '_tc' (default) | string

 coder.HdlConfig class

6-15

UseFileIOInTestBench

Create and use data files for reading and writing test bench input and output data.

Values: 'off' (default) | 'on'

UseMatrixTypesInHDL

Generate 2-D matrix types in HDL code for MATLAB matrices, specified as a logical.

UseMatrixTypesInHDL Value Description

false (default) Generate HDL vectors with index computation logic for
MATLAB matrices. This option can use more area in
the synthesized hardware.

true Generate HDL matrices for MATLAB matrices. This
option can save area in the synthesized hardware.

The following requirements apply:

• Matrix elements cannot be complex or struct data
types.

• You cannot use linear indexing to specify matrix
elements. For example, if you have a 3x3 matrix, A,
you cannot use A(4). Instead, use A(2,1).

You can also use a colon operator in either the row
or column subscript, but not both. For example, you
can use A(3,1:3) and A(2:3,1), but not A(2:3,
1:3).

• If you enable PartitionFunctions,
UseMatrixTypesInHDL has no effect.

Values: false (default) | true

Cosimulation

GenerateCosimTestBench

Generate a cosimulation test bench or not, specified as a logical.

6 Class Reference for HDL Code Generation from MATLAB

6-16

Values: false (default) | true

SimulateCosimTestBench

Simulate generated cosimulation test bench, specified as a logical. This option is
ignored if GenerateCosimTestBench is false.

Values: false (default) | true

CosimClockEnableDelay

Time (in clock cycles) between deassertion of reset and assertion of clock enable.

Values: 0 (default)

CosimClockHighTime

The number of nanoseconds the clock is high.

Values: 5 (default)

CosimClockLowTime

The number of nanoseconds the clock is low.

Values: 5 (default)

CosimHoldTime

The hold time for input signals and forced reset signals, specified in nanoseconds.

Values: 2 (default)

CosimLogOutputs

Log and plot outputs of the reference design function and HDL simulator.

Values: false (default) | true

CosimResetLength

Specify time (in clock cycles) between assertion and deassertion of reset.

 coder.HdlConfig class

6-17

Values: 2 (default)

CosimRunMode

HDL simulator run mode during simulation, specified as a string. When in Batch mode,
you do not see the HDL simulator GUI, and the HDL simulator automatically shuts
down after simulation.

Values: Batch (default) | GUI

CosimTool

HDL simulator for the generated cosim test bench, specified as a string.

Values: ModelSim (default) | Incisive

FPGA-in-the-loop

GenerateFILTestBench

Generate a FIL test bench or not, specified as a logical.

Values: false (default) | true

SimulateFILTestBench

Simulate generated cosimulation test bench, specified as a logical. This option is
ignored if GenerateCosimTestBench is false.

Values: false (default) | true

FILBoardName

FPGA board name, specified as a string. You must override the default value and specify
a valid board name.

Values: 'Choose a board' (default) | string

FILBoardIPAddress

IP address of the FPGA board, specified as a string. You must enter a valid IP address.

6 Class Reference for HDL Code Generation from MATLAB

6-18

Values: 192.168.0.2 (default) | string

FILBoardMACAddress

MAC address of the FPGA board, specified as a string. You must enter a valid MAC
address.

Values: 00-0A-35-02-21-8A (default) | string

FILAdditionalFiles

List of additional source files to include, specified as a string. Separate file names with a
semi-colon (";").

Values: '' (default) | string

FILLogOutputs

Log and plot outputs of the reference design function and FPGA.

Values: false (default) | true

Examples

Generate Verilog Code from MATLAB Code

Create a coder.HdlConfig object, hdlcfg.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config

Set the test bench name. In this example, the test bench function name is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Set the target language to Verilog.

hdlcfg.TargetLanguage = 'Verilog';

Generate HDL code from your MATLAB design. In this example, the MATLAB design
function name is mlhdlc_dti.

 coder.HdlConfig class

6-19

codegen -config hdlcfg mlhdlc_dti

Generate Cosim and FIL Test Benches

Create a coder.FixptConfig object with default settings and provide test bench name.

fixptcfg = coder.config('fixpt');

fixptcfg.TestBenchName = 'mlhdlc_sfir_tb';

Create a coder.HdlConfig object with default settings and set enable rate.

hdlcfg = coder.config('hdl'); % Create a default 'hdl' config

hdlcfg.EnableRate = 'DUTBaseRate';

Instruct MATLAB to generate a cosim test bench and a FIL test bench. Specify FPGA
board name.

hdlcfg.GenerateCosimTestBench = true;

hdlcfg.FILBoardName = 'Xilinx Virtex-5 XUPV5-LX110T development board';

hdlcfg.GenerateFILTestBench = true;

Perform code generation, Cosim test bench generation, and FIL test bench generation.

codegen -float2fixed fixptcfg -config hdlcfg mlhdlc_sfir

• “Generate HDL Code from MATLAB Code Using the Command Line Interface”

Alternatives

You can also generate HDL code from MATLAB code using the HDL Workflow Advisor.
For more information, see “HDL Code Generation from a MATLAB Algorithm”.

See Also

Functions
codegen | coder.config | hdlcoder.CodingStandard

Classes
coder.FixptConfig

Properties
HDL Coding Standard Customization Properties

7

Shared Class and Function Reference
for HDL Code Generation from
MATLAB and Simulink

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-2

hdlcoder.CodingStandard
Create HDL coding standard customization object

Syntax

cso = hdlcoder.CodingStandard(standardName)

Description

cso = hdlcoder.CodingStandard(standardName) creates an HDL coding standard
customization object that you can use to customize the rules and the appearance of the
coding standard report.

If you do not want to customize the rules or appearance of the coding standard report,
you do not need to create an HDL coding standard customization object.

Examples

Customize coding standard rules for MATLAB to HDL workflow

Create an HDL coding standard customization object, cso.

cso = hdlcoder.CodingStandard('Industry')

cso =

 ShowPassingRules.enable: true

 HDLKeywords.enable: true [CGSL-1.A.A.3]

 DetectDuplicateNamesCheck.enable: true [CGSL-1.A.A.5]

 SignalPortParamNameLength.enable: true [CGSL-1.A.B.1]

 SignalPortParamNameLength.length: [2 40] [CGSL-1.A.B.1]

 ModuleInstanceEntityNameLength.enable: true [CGSL-1.A.C.3]

 ModuleInstanceEntityNameLength.length: [2 32] [CGSL-1.A.C.3]

 InitialStatements.enable: true [CGSL-2.C.D.1]

 IfElseChain.enable: true [CGSL-2.G.C.1c]

 IfElseChain.length: 7 [CGSL-2.G.C.1c]

 IfElseNesting.enable: true [CGSL-2.G.C.1a]

 IfElseNesting.depth: 3 [CGSL-2.G.C.1a]

 hdlcoder.CodingStandard

7-3

 MinimizeVariableUsage.enable: true [CGSL-2.G]

 MultiplierBitWidth.enable: true [CGSL-2.J.F.5]

 MultiplierBitWidth.width: 16 [CGSL-2.J.F.5]

 LineLength.enable: true [CGSL-3.A.D.5]

 LineLength.length: 110 [CGSL-3.A.D.5]

 NonIntegerTypes.enable: true [CGSL-3.B.D.1]

Customize the coding standard options as follows:

• Do not show passing rules in the coding standard report.
• Set the maximum if-else nesting depth to 2.
• Disable the check for line length.

cso.ShowPassingRules.enable = false;

cso.IfElseNesting.depth = 2;

cso.LineLength.enable = false;

Create an HDL codegen configuration object.

hdlcfg = coder.config('hdl')

Specify the coding standard and coding standard customization object.

hdlcfg.HDLCodingStandard = 'Industry';

hdlcfg.HDLCodingStandardCustomizations = cso;

Specify your test bench function name. In this example, the test bench function is
mlhdlc_dti_tb.

hdlcfg.TestBenchName = 'mlhdlc_dti_tb';

Generate HDL code for the design and check the code according to the customized HDL
coding standard rules. In this example, the design function is mlhdlc_dti.

codegen -config hdlcfg mlhdlc_dti

Customize coding standard rules for Simulink to HDL workflow

Create an HDL coding standard customization object, cso.

cso = hdlcoder.CodingStandard('Industry')

cso =

 ShowPassingRules.enable: true

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-4

 HDLKeywords.enable: true [CGSL-1.A.A.3]

 DetectDuplicateNamesCheck.enable: true [CGSL-1.A.A.5]

 SignalPortParamNameLength.enable: true [CGSL-1.A.B.1]

 SignalPortParamNameLength.length: [2 40] [CGSL-1.A.B.1]

 ModuleInstanceEntityNameLength.enable: true [CGSL-1.A.C.3]

 ModuleInstanceEntityNameLength.length: [2 32] [CGSL-1.A.C.3]

 InitialStatements.enable: true [CGSL-2.C.D.1]

 IfElseChain.enable: true [CGSL-2.G.C.1c]

 IfElseChain.length: 7 [CGSL-2.G.C.1c]

 IfElseNesting.enable: true [CGSL-2.G.C.1a]

 IfElseNesting.depth: 3 [CGSL-2.G.C.1a]

 MinimizeVariableUsage.enable: true [CGSL-2.G]

 MultiplierBitWidth.enable: true [CGSL-2.J.F.5]

 MultiplierBitWidth.width: 16 [CGSL-2.J.F.5]

 LineLength.enable: true [CGSL-3.A.D.5]

 LineLength.length: 110 [CGSL-3.A.D.5]

 NonIntegerTypes.enable: true [CGSL-3.B.D.1]

Customize the coding standard options as follows:

• Do not show passing rules in the coding standard report.
• Set the maximum line length to 80 characters.
• Check that module, instance, and entity names are between 5 and 50 characters long.

cso.ShowPassingRules.enable = false;

cso.LineLength.length = 80;

cso.ModuleInstanceEntityNameLength.length = [5 50];

Generate HDL code for your design and check it according to the customized HDL coding
standard rules. In this example, the model is sfir_fixed, with a DUT subsystem,
symmetric_fir.

makehdl('sfir_fixed/symmetric_fir','HDLCodingStandard','Industry',...

 'HDLCodingStandardCustomizations',cso)

• “Generate an HDL Coding Standard Report from Simulink”
• “Generate an HDL Coding Standard Report from MATLAB”

Input Arguments

standardName — HDL coding standard name
'Industry'

 hdlcoder.CodingStandard

7-5

Specify the HDL coding standard to customize. The standardName value must match the
HDLCodingStandard property value.

Example: 'Industry'

Output Arguments

cso — HDL coding standard customizations
HDL coding standard customization object

HDL coding standard customizations, returned as an HDL coding standard
customization object.

More About
• “HDL Coding Standard Rules”
• “HDL Coding Standard Report”

See Also

Properties
HDL Coding Standard Customization Properties |
HDLCodingStandardCustomizations

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-6

HDL Coding Standard Customization Properties
Customize HDL coding standard

HDL coding standard customization properties control how HDL Coder generates and
checks code according to a specified coding standard. By changing property values, you
can customize the rules and the appearance of the coding standard report.

Use dot notation to refer to a particular object and property:

cso = hdlcoder.CodingStandard('Industry');

len = cso.SignalPortParamNameLength.length;

cso.ShowPassingRules.enable = false;

The generated code follows the customized coding standard rules as much as
possible. However, if following a coding standard rule could cause the HDL code to be
uncompilable or unsynthesizable, the coder does not follow the rule.

Coding Standard Report

ShowPassingRules — Show passing rules in coding standard report
structure

Show or do not show passing rules in coding standard report, specified as a structure
with the following field.

Field Description

enable Set to true to show passing rules in coding
standard report.

Set to false to show only rules with errors
or warnings.

The default is true.

Basic Coding Rules

HDLKeywords — Check for HDL keywords in design names
structure

 HDL Coding Standard Customization Properties

7-7

Check for HDL keywords in design names (rule CGSL-1.A.A.3), specified as a structure
with the following field.

Field Description

enable Set to true to check for HDL keywords in
design names.

Set to false if you do not want to check for
HDL keywords in design names.

The default is true.

DetectDuplicateNamesCheck — Check for duplicate names
structure

Check for duplicate names in the design (rule CGSL-1.A.A.5), specified as a structure
with the following field.

Field Description

enable Set to true to check for duplicate names in
the design.

Set to false if you do not want to check for
duplicate names in the design.

The default is true.

SignalPortParamNameLength — Check signal, port, and parameter name length
structure

Check for signal, port, and parameter name lengths (rule CGSL-1.A.B.1), specified as a
structure with the following fields.

Field Description

enable Set to true to check the length of signal,
port, and parameter names.

Set to false if you do not want to check
the length of signal, port, and parameter
names.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-8

Field Description

The default is true.
length Minimum and maximum length of signal,

port, and parameter names, specified as a
2-element array of positive integers.

The first element is the minimum length,
and the second element is the maximum
length. The default is [2 40].

ModuleInstanceEntityNameLength — Check module, instance, and entity name length
structure

Check for module, instance, and entity name lengths (rule CGSL-1.A.C.3), specified as a
structure with the following fields.

Field Description

enable Set to true to check the length of module,
instance, and entity names.

Set to false if you do not want to check
the length of module, instance, and entity
names.

The default is true.
length Minimum and maximum length of module,

instance, and entity name names, specified
as a 2-element array of positive integers.

The first element is the minimum length,
and the second element is the maximum
length. The default is [2 32].

RTL Description Rules

MinimizeClockEnableCheck — Check for clock enable signals
structure

 HDL Coding Standard Customization Properties

7-9

Check for clock enable signals in the generated code (rule CGSL-2.C.C.4), specified as a
structure with the following field.

Field Description

enable Set to true to minimize clock enables in
the generated code and check for clock
enable signals after code generation.

Set to false if you do not want to check for
clock enable signals in the generated code.

The default is false.

RemoveResetCheck — Check for reset signals
structure

Check for reset signals in the design (rule CGSL-2.C.C.5), specified as a structure with
the following field.

Field Description

enable Set to true to minimize reset signals in the
generated code and check for reset signals
after code generation.

Set to false if you do not want to check for
reset signals in the design.

The default is false.

InitialStatements — Check for initial statements that set RAM initial values
structure

Check for initial statements that set RAM initial values (rule CGSL-2.C.D.1), specified as
a structure with the following field.

Field Description

enable Set to true to check for initial statements
that set RAM initial values.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-10

Field Description

Set to false if you do not want to check
for initial statements that set RAM initial
values.

The default is true.

MinimizeVariableUsage — Minimize use of variables
structure

Minimize use of variables (rule CGSL-2.G), specified as a structure with the following
field.

Field Description

enable Set to true to minimize use of variables.

Set to false if you do not want to
minimize use of variables.

The default is true.

IfElseNesting — Check if-else statement nesting depth
structure

Check for if-else statement nesting depth (rule CGSL-2.G.C.1a), specified as a structure
with the following fields.

Field Description

enable Set to true to check if-else statement
nesting depth.

Set to false if you do not want to check if-
else statement nesting depth.

The default is true.
depth Maximum if’-else statement nesting depth,

specified as a positive integer.

The default is 3.

 HDL Coding Standard Customization Properties

7-11

IfElseChain — Check if-else statement chain length
structure

Check for if-else statement chain length (rule CGSL-2.G.C.1c), specified as a structure
with the following fields.

Field Description

enable Set to true to check if-else statement chain
length.

Set to false if you do not want to check if-
else statement chain length.

The default is true.
length Maximum length of if-else statement chain,

specified as a positive integer.

The default is 7.

MultiplierBitWidth — Check multiplier bit width
structure

Check for multiplier bit width (rule CGSL-2.J.F.5), specified as a structure with the
following fields.

Field Description

enable Set to true to check multiplier bit width.

Set to false if you do not want to check
multiplier bit width.

The default is true.
width Maximum multiplier bit width, specified as

a positive integer.

The default is 16.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-12

RTL Design Rules

LineLength — Check generated code line length
structure

Check for generated code line length (rule CGSL-3.A.D.5), specified as a structure with
the following fields.

Field Description

enable Set to true to check line lengths in
generated code.

Set to false if you do not want tocheck
line lengths in generated code.

The default is true.
length Maximum number of characters per line

in generated code, specified as a positive
integer.

The default is 110.

NonIntegerTypes — Check for non-integer constants
structure

Check for non-integer constants (rule CGSL-3.B.D.1), specified as a structure with the
following field.

Field Description

enable Set to true to check for non-integer
constants.

Set to false if you do not want to check for
non-integer constants.

The default is true.

See Also
hdlcoder.CodingStandard

 HDL Coding Standard Customization Properties

7-13

Related Examples
• “Generate an HDL Coding Standard Report from MATLAB”
• “Generate an HDL Coding Standard Report from Simulink”

More About
• “HDL Coding Standard Rules”
• “HDL Coding Standard Report”

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-14

hdl.BlackBox System object

Black box for including custom HDL code

Description

hdl.BlackBox provides a way to include custom HDL code, such as legacy or
handwritten HDL code, in a MATLAB design intended for HDL code generation.

When you create a user-defined System object that inherits from hdl.BlackBox, you
specify a port interface and simulation behavior that matches your custom HDL code.

HDL Coder simulates the design in MATLAB using the behavior you define in the
System object. During code generation, instead of generating code for the simulation
behavior, the coder instantiates a module with the port interface you specify in the
System object.

To use the generated HDL code in a larger system, you include the custom HDL source
files with the rest of the generated code.

Construction

B = hdl.BlackBox creates a black box System object for HDL code generation.

Properties

AddClockEnablePort — Add clock enable port
'on' (default) | 'off'

If 'on', add a clock enable input port to the interface generated for the black box System
object. The name of the port is specified by ClockEnableInputPort.

AddClockPort — Add clock port
'on' (default) | 'off'

If 'on', add a clock input port to the interface generated for the black box System object.
The name of the port is specified by ClockInputPort.

 hdl.BlackBox System object

7-15

AddResetPort — Add reset port
'on' (default) | 'off'

If 'on', add a reset input port to the interface generated for the black box System object.
The name of the port is specified by ResetInputPort.

AllowDistributedPipelining — Register placement for distributed pipelining
'off' (default) | 'on'

If 'on', allow HDL Coder to move registers across the black box System object, from
input to output or output to input.

ClockEnableInputPort — Clock enable input port name
'clk_enable' (default) | string

HDL name for clock enable input port, specified as a string.

ClockInputPort — Clock input port name
'clk' (default) | string

HDL name for clock input port, specified as a string.

EntityName — Module or entity name
System object instance name (default) | string

VHDL entity or Verilog module name generated for the black box System object, specified
as a string.
Example: 'myBlackBoxName'

ImplementationLatency — Latency in clock cycles
-1 (default) | integer

Latency of black box System object in clock cycles, specified as an integer.

If 0 or greater, this value is used for delay balancing.

If -1, latency is unknown. This disables delay balancing.

InlineConfigurations — Generate VHDL configuration
InlineConfigurations global property value (default) | 'on' | 'off'

When 'on', generate a VHDL configuration.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-16

When 'off', do not generate a VHDL configuration and require a user-supplied
external configuration. Set to 'off' if you are creating your own VHDL configuration.

InputPipeline — Input pipeline stages
0 (default) | positive integer

Number of input pipeline stages, or pipeline depth, to insert in the generated code.

OutputPipeline — Output pipeline stages
0 (default) | positive integer

Number of output pipeline stages, or output pipeline depth, to insert in the generated
code.

ResetInputPort — Reset port name
'reset' (default) | string

HDL name for reset input port, specified as a string.

VHDLArchitectureName — VHDL architecture name
'rtl' (default) | string

VHDL architecture name, specified as a string. The coder generates the architecture
name only if InlineConfigurations is 'on'.

VHDLComponentLibrary — VHDL component library name
'work' (default) | string

Library from which to load the VHDL component, specified as a string.

NumInputs — Number of custom input ports
1 (default) | positive integer

Number of additional input ports in the custom HDL code, specified as a positive integer.

NumOutputs — Number of custom output ports
1 (default) | positive integer

Number of additional output ports in the custom HDL code, specified as a positive
integer.

See Also
coder.HdlConfig

 hdl.BlackBox System object

7-17

Related Examples
• “Integrate Custom HDL Code Into MATLAB Design”
• “Generate a Board-Independent IP Core from MATLAB”

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-18

hdl.RAM System object

Single, simple dual, or dual-port RAM for memory read/write access

Description
hdl.RAM reads from and writes to memory locations for a single, simple dual, or dual-
port RAM. The output data is delayed one step.

If your data is scalar, the RAM size, or number of locations, is inferred from the data type
of the address variable as shown in the following table.

Data type of address variable RAM address size (bits)

single or double 16
uintN N

embedded.fi WordLength

The maximum RAM address size is 32 bits.

Construction
H = hdl.RAM creates a single port RAM System object. This object allows you to read
from or write to a memory location in the RAM. The output data port corresponds to the
read/write address passed in with the step method.

H = hdl.RAM(Name,Value) creates a single, simple dual, or dual port
hdl.RAM System object, H, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). See “Properties” on page 7-18 for the list of
available property names.

Properties

RAMType

Type of RAM to be created

 hdl.RAM System object

7-19

Default: Single port

Specify the type of RAM to be created. Values of this property are:

Single Port Create a single port RAM, with 3 inputs and 1 output.

Inputs:

• Write Data
• Write address
• Write enable

Outputs: Read/Write Data
Simple dual port Create a simple dual-port RAM, with 4 inputs and 1

output.

Inputs:

• Write Data
• Write address
• Write enable
• Read address

Outputs: Read Data
Dual port Create a dual-port RAM, with 4 inputs and 2 outputs.

Inputs:

• Write Data
• Read/Write address
• Write enable
• Read address

Outputs:

• Write Data
• Read Data

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-20

WriteOutputValue

Behavior for Write output

Default: New data

Specify the behavior for Write output for single-port and dual-port RAMs. Values of this
property are:

New data Send out new data at the address to the output.
Old data Send out old data at the address to the output.

Methods

step
Read or write input value to memory
location

Examples

Create Single-Port RAM System Object

Construct System object to read from or write to a memory location in RAM.

The output data port corresponds to the read/write address passed in. During a write
operation, the old data at the write address is sent out as the output.
 H = hdl.RAM('RAMType','Single port','WriteOutputValue','Old data')

H =

 System: hdl.RAM

 Properties:

 RAMType: 'Single port'

 WriteOutputValue: 'Old data'

Create Simple Dual-Port RAM System Object

Construct System object to read from and write to different memory locations in RAM.

 hdl.RAM System object

7-21

The output data port corresponds to the read address. If a read operation is performed
at the same address as the write operation, old data at that address is read out as the
output.

H = hdl.RAM('RAMType','Simple dual port')

H =

 System: hdl.RAM

 Properties:

 RAMType: 'Simple dual port'

Create Dual-Port RAM System Object

Construct System object to read from and write to different memory locations in RAM.

There are two output ports, a write output data port and a read output data port. The
write output data port sends out the new data at the write address. The read output data
port sends out the old data at the read address.
H = hdl.RAM('RAMType','Dual port','WriteOutputValue','New data')

H =

 System: hdl.RAM

 Properties:

 RAMType: 'Dual port'

 WriteOutputValue: 'New data'

Read/Write Single-Port RAM

Create System object that can write to a single port RAM, and read the newly written
value out.

Construct single-port RAM System object.
hRAM = hdl.RAM('RAMType','Single port','WriteOutputValue','New data');

Preallocate memory.
dataLength = 100;

[dataIn dataOut] = deal(zeros(1,dataLength));

Write randomly generated data to the System object, and then read data back out again.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-22

for ii = 1:dataLength

 dataIn(ii) = randi([0 63],1,1,'uint8');

 addressIn = uint8(ii-1);

 writeEnable = true;

 dataOut(ii) = step(hRAM,dataIn(ii),addressIn,writeEnable);

end ;

See Also

Blocks
Dual Port RAM | Dual Rate Dual Port RAM | Simple Dual Port RAM | Single Port RAM

More About
• “Implement RAM Using MATLAB Code”
• “HDL Code Generation for System Objects”
• “System Objects”

 step

7-23

step

System object: hdl.RAM

Read or write input value to memory location

Syntax

DATAOUT = step(H,WRITEDATA,READWRITEADDRESS,WRITEENABLE)

READDATAOUT = step(H,WRITEDATA,WRITEADDRESS,WRITEENABLE,READADDRESS)

[WRITEDATAOUT,READDATAOUT] =

step(H,WRITEDATA,WRITEADDRESS,WRITEENABLE,READADDRESS)

Description

DATAOUT = step(H,WRITEDATA,READWRITEADDRESS,WRITEENABLE) allows you
to read the value in memory location READWRITEADDRESS when WRITEENABLE
is false. It also allows you to write the value WRITEDATA into the memory location
READWRITEADDRESS when WRITEENABLE is true. DATAOUT is the new or
old data at READWRITEADDRESS when WRITEENABLE is true, or the data
at READWRITEADDRESS when WRITEENABLE is false. This step syntax is
appropriate for a single-port RAM System object.

READDATAOUT = step(H,WRITEDATA,WRITEADDRESS,WRITEENABLE,READADDRESS)

allows you to write the value WRITEDATA into memory location WRITEADDRESS
when WRITEENABLE is true. READDATAOUT is the old data at the address location
READADDRESS. This step syntax is appropriate for a simple dual-port RAM System
object.

[WRITEDATAOUT,READDATAOUT] =

step(H,WRITEDATA,WRITEADDRESS,WRITEENABLE,READADDRESS) allows you
to write the value WRITEDATA into the memory location WRITEADDRESS when
WRITEENABLE is true. WRITEDATAOUT is the new or old data at memory
location WRITEADDRESS. READDATAOUT is the old data at the address location
READADDRES. This step syntax is appropriate for a dual-port RAM System object.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-24

hdl.RAM Input Requirements

Input Requirement

WRITEDATA Must be scalar. This value can be double, single, integer, or
a fixed-point (fi) object, and can be real or complex.

WRITEENABLE Must be a scalar, logical value.
WRITEADDRESS and
READADDRESS

Must be real and unsigned. This value can be either fixed-
point (fi) objects or integers.

Examples

Read/Write Single-Port RAM

Create System object that can write to a single port RAM and read the newly written
value out.

Construct single-port RAM System object.
hRAM = hdl.RAM('RAMType','Single port','WriteOutputValue','New data');

Preallocate memory.
dataLength = 100;

[dataIn dataOut] = deal(zeros(1,dataLength));

Write randomly generated data to the System object, and then read data back out again.
for ii = 1:dataLength

 dataIn(ii) = randi([0 63],1,1,'uint8');

 addressIn = uint8(ii-1);

 writeEnable = true;

 dataOut(ii) = step(hRAM,dataIn(ii),addressIn,writeEnable);

end ;

• “Implement RAM Using MATLAB Code”

See Also
hdl.RAM

 coder.hdl.loopspec

7-25

coder.hdl.loopspec
Unroll or stream loops in generated HDL code

Syntax

coder.hdl.loopspec('unroll')

coder.hdl.loopspec('unroll',unroll_factor)

coder.hdl.loopspec('stream')

coder.hdl.loopspec('stream',stream_factor)

Description

coder.hdl.loopspec('unroll') fully unrolls a loop in the generated HDL code.
Instead of a loop statement, the generated code contains multiple instances of the loop
body, with one loop body instance per loop iteration.

This pragma does not affect MATLAB simulation behavior.

Note: If you specify the coder.unroll pragma, it takes precedence over
coder.hdl.loopspec, and coder.hdl.loopspec has no effect.

coder.hdl.loopspec('unroll',unroll_factor) unrolls a loop by the specified
unrolling factor, unroll_factor, in the generated HDL code.

The generated HDL code is a loop statement that contains unroll_factor instances
of the original loop body. The number of loop iterations in the generated code is
(original_loop_iterations / unroll_factor). If (original_loop_iterations /
unroll_factor) has a remainder, the remaining iterations are fully unrolled as loop body
instances outside the loop.

This pragma does not affect MATLAB simulation behavior.

Note: If you specify the coder.unroll pragma, it takes precedence over
coder.hdl.loopspec, and coder.hdl.loopspec has no effect.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-26

coder.hdl.loopspec('stream') generates a single instance of the loop body in
the HDL code. Instead of using a loop statement, the generated code implements local
oversampling and added logic to match the functionality of the original loop.

You can specify this pragma for loops at the top level of your MATLAB design.

This pragma does not affect MATLAB simulation behavior.

Note: If you specify the coder.unroll pragma, it takes precedence over
coder.hdl.loopspec, and coder.hdl.loopspec has no effect.

coder.hdl.loopspec('stream',stream_factor) unrolls the loop with
unroll_factor set to original_loop_iterations / stream_factor rounded down to
the nearest integer, and also oversamples the loop. If (original_loop_iterations /
stream_factor) has a remainder, the remainder loop body instances outside the loop are
not oversampled, and run at the original rate.

You can specify this pragma for loops at the top level of your MATLAB design.

This pragma does not affect MATLAB simulation behavior.

Note: If you specify the coder.unroll pragma, it takes precedence over
coder.hdl.loopspec, and coder.hdl.loopspec has no effect.

Examples

Completely unroll MATLAB loop in generated HDL code

Unroll loop in generated code.

function y = hdltest

 pv = uint8(1);

 y = uint8(zeros(1,10));

 coder.hdl.loopspec('unroll');

 % Optional comment between pragma and loop statement

 for i = 1:10

 y(i) = pv + i;

 coder.hdl.loopspec

7-27

 end

end

Partially unroll MATLAB loop in generated HDL code

Generate a loop statement in the HDL code that has 2 iterations and contains 5
instances of the original loop body.

function y = hdltest

 pv = uint8(1);

 y = uint8(zeros(1,10));

 coder.hdl.loopspec('unroll', 5);

 % Optional comment between pragma and loop statement

 for i = 1:10

 y(i) = pv + i;

 end

end

Completely stream MATLAB loop in generated HDL code

In the generated code, implement the 10-iteration MATLAB loop as a single instance of
the original loop body that is oversampled by a factor of 10.

function y = hdltest

 pv = uint8(1);

 y = uint8(zeros(1,10));

 coder.hdl.loopspec('stream');

 % Optional comment between pragma and loop statement

 for i = 1:10

 y(i) = pv + i;

 end

end

Partially stream MATLAB loop in generated HDL code

In the generated code, implement the 10-iteration MATLAB loop as 5 instances of the
original loop body that are oversampled by a factor of 2.

function y = hdltest

 pv = uint8(1);

 y = uint8(zeros(1,10));

 coder.hdl.loopspec('stream', 2);

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-28

 % Optional comment between pragma and loop statement

 for i = 1:10

 y(i) = pv + i;

 end

end

Input Arguments

stream_factor — Loop streaming factor
positive integer

Loop streaming factor, specified as a positive integer.

Setting stream_factor to the number of original loop iterations is equivalent to fully
streaming the loop, or using coder.hdl.loopspec('stream').

Example: 4

unroll_factor — Loop unrolling factor
positive integer

Number of loop body instances, specified as a positive integer.

Setting unroll_factor to the number of original loop iterations is equivalent to fully
unrolling the loop, or using coder.hdl.loopspec('unroll').

Example: 10

More About
• “Optimize MATLAB Loops”

Introduced in R2015a

 coder.hdl.pipeline

7-29

coder.hdl.pipeline
Insert pipeline registers at output of MATLAB expression

Syntax

out = coder.hdl.pipeline(expr)

out = coder.hdl.pipeline(expr,num)

Description

out = coder.hdl.pipeline(expr) inserts one pipeline register at the output of expr
in the generated HDL code. This pragma does not affect MATLAB simulation behavior.

Use this pragma to specify exactly where to insert pipeline registers. For example, in a
MATLAB assignment statement, you can specify the coder.hdl.pipeline pragma:

• On the entire right-hand side.
• On a sub-expression.
• By nesting multiple pragmas.
• On a call to a subfunction, if the subfunction returns a single value. You cannot

specify the pragma for a subfunction that returns multiple values.

If you enable distributed pipelining, HDL Coder can move the pipeline registers to break
the critical path.

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if
any of the variables in the expression are:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot add a pipeline

register for an expression containing y:

function [y] = myfun(x)

y = x + 5;

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-30

end

• In a data feedback loop. For example, in the following code, an expression containing
the t or pvar variables cannot be pipelined:

persistent pvar;

t = u + pvar;

pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable
or other no-op expression. To learn how to insert a pipeline register for a function input
variable, see “Register Inputs and Outputs”.

out = coder.hdl.pipeline(expr,num) inserts num pipeline registers at the output
of expr in the generated HDL code. This pragma does not affect MATLAB simulation
behavior.

Use this pragma to specify exactly where to insert pipeline registers. For example, in a
MATLAB assignment statement, you can specify the coder.hdl.pipeline pragma:

• On the entire right-hand side.
• On a sub-expression.
• By nesting multiple pragmas.
• On a call to a subfunction, if the subfunction returns a single value. You cannot

specify the pragma for a subfunction that returns multiple values.

If you enable distributed pipelining, HDL Coder can move the pipeline registers to break
the critical path.

HDL Coder cannot insert a pipeline register at the output of a MATLAB expression if
any of the variables in the expression are:

• In a loop.
• A persistent variable that maps to a state element, like a state register or RAM.
• An output of a function. For example, in the following code, you cannot add a pipeline

register for an expression containing y:

function [y] = myfun(x)

y = x + 5;

end

• In a data feedback loop. For example, in the following code, an expression containing
the t or pvar variables cannot be pipelined:

 coder.hdl.pipeline

7-31

persistent pvar;

t = u + pvar;

pvar = t + v;

You cannot use coder.hdl.pipeline to insert a pipeline register for a single variable
or other no-op expression. To learn how to insert a pipeline register for a function input
variable, see “Register Inputs and Outputs”.

Examples

Insert one pipeline register at output of MATLAB expression

Insert a single pipeline register at the output of a MATLAB expression, a + b * c.

y = coder.hdl.pipeline(a + b * c);

Insert multiple pipeline registers at output of MATLAB expression

Insert three pipeline registers at the output of a MATLAB expression, a + b * c.

 y = coder.hdl.pipeline(a + b * c, 3);

Insert pipeline registers at intermediate stage of MATLAB expression

For a MATLAB expression, a + b * c, insert five pipeline registers after the
computation of b * c.

 y = a + coder.hdl.pipeline(b * c, 5);

Insert pipeline registers at intermediate stage and at output of MATLAB expression

Use nested coder.hdl.pipeline pragmas to insert pipeline registers at an
intermediate stage and at the output of a MATLAB expression.

For a MATLAB expression, a + b * c, insert five pipeline registers after the
computation of b * c, and two pipeline registers at the output of the whole expression.

 y = coder.hdl.pipeline(a + coder.hdl.pipeline(b * c, 5),2);

• “Pipeline MATLAB Expressions”

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-32

Input Arguments

expr — MATLAB expression to pipeline
MATLAB expression

MATLAB expression to pipeline. Insert pipeline registers at the output of this expression
in the generated HDL code.
Example: a + b

num — Number of registers
MATLAB expression

Number of pipeline registers to insert at the output of expr in the generated HDL code,
specified as a positive integer.
Example: 3

More About
• “Pipelining MATLAB Code”

Introduced in R2015a

 hdlcoder.Board class

7-33

hdlcoder.Board class
Package: hdlcoder

Board registration object that describes SoC custom board

Description

board = hdlcoder.Board creates a board object that you use to register a custom
board for an SoC platform.

To specify the characteristics of your board, set the properties of the board object.

Construction

board = hdlcoder.Board creates an hdlcoder.Board object that you can use to
register a custom board for an SoC platform.

Properties

BoardName — Board name
'' (default) | string

Board name, specified as a string. In the HDL Workflow Advisor, this name appears in
the Target platform dropdown list.
Example: 'Enclustra Mars ZX3 with PM3 base board'

FPGAVendor — Vendor name
'' (default) | 'Altera' | 'Xilinx'

FPGA vendor name, specified as a string.
Example: 'Xilinx'

FPGAFamily — FPGA family name
'' (default) | string

FPGA family name, specified as a string.

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-34

Example: 'Zynq'

FPGADevice — FPGA device identifier
'' (default) | string

FPGA device identifier, specified as a string.
Example: 'xc7z020'

FPGAPackage — FPGA package identifier for Xilinx devices
'' (default) | string

FPGA package identifier for Xilinx devices, specified as a string.

For Altera devices, this property is ignored.
Example: 'clg484'

FPGASpeed — FPGA speed for Xilinx devices
'' (default) | string

FPGA speed for Xilinx devices, specified as a string.

For Altera devices, this property is ignored.
Example: '-1'

SupportedTool — Supported synthesis tool
'' (default) | cell array of strings

Synthesis tool or tools that support this board, specified as a cell array of strings. In the
HDL Workflow Advisor, the Synthesis tool dropdown list shows the values in this cell
array.
Example: {'Altera Quartus II'}

Example: {'Xilinx Vivado'}

Example: {'Xilinx Vivado','Xilinx ISE'}

JTAGChainPosition — Optional JTAG chain position number
2 (default) | positive integer

JTAG chain position number, specified as a positive integer. The JTAG chain position
number is used when programming the FPGA via JTAG.

 hdlcoder.Board class

7-35

This property is optional.
Example: 3

Methods

addExternalIOInterface
Define external IO interface for board
object

addExternalPortInterface
Define external port interface for board
object

validateBoard
Check property values in board object

See Also
hdlcoder.ReferenceDesign

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-36

addExternalIOInterface

Class: hdlcoder.Board
Package: hdlcoder

Define external IO interface for board object

Syntax

addExternalIOInterface('InterfaceID',interfacename,'InterfaceType',

interfacetype,'PortName',portname,'PortWidth',portwidth,'FPGAPin',

pins,'IOPadConstraint',constraints)

Description

addExternalIOInterface('InterfaceID',interfacename,'InterfaceType',

interfacetype,'PortName',portname,'PortWidth',portwidth,'FPGAPin',

pins,'IOPadConstraint',constraints) adds an external IO interface to an
hdlcoder.Board object. You can add multiple external IO interfaces to your board
object.

Use this method if your board has more than one external interface, or if you want to be
able to predefine FPGA pin names for mapping from the HDL Workflow Advisor.

Tips

• For details about the external IO interface ports, pins, and constraints for your board,
view the board documentation.

Input Arguments

interfacename — Interface name
string

 addExternalIOInterface

7-37

Interface name, specified as a string. In the HDL Workflow Advisor, this name appears
in the Target Platform Interfaces dropdown list.
Example: 'LEDs General Purpose'

interfacetype — Interface direction
'IN' | 'OUT'

Interface direction, specified as a string. In the HDL Workflow Advisor, when you specify
a target interface for each of your DUT ports, this external IO interface is available only
for ports with a matching direction.

For example, if you set interfacetype to 'OUT', this external IO interface is available only
for Outport DUT ports.

Example: 'OUT'

portname — Port name
string

Board top-level port name, specified as a string.
Example: 'GPLEDs'

portwidth — Port bit width
positive integer

Port bit width, specified as a positive integer.
Example: 4

pins — Pin names
cell array of strings

FPGA pin names, specified as a cell array of strings.
Example: {'H18','AA14','AA13','AB15'}

constraints — IO pad constraints
{} (default) | cell array of strings

IO pad constraints, specified as a cell array of strings.
Example: {'IOSTANDARD = LVCMOS25'}

Example: {'IOSTANDARD = LVCMOS25','SLEW = SLOW'}

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-38

See Also
hdlcoder.Board | hdlcoder.Board.addExternalPortInterface

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

 addExternalPortInterface

7-39

addExternalPortInterface
Class: hdlcoder.Board
Package: hdlcoder

Define external port interface for board object

Syntax

addExternalPortInterface('IOPadConstraint',constraints)

Description

addExternalPortInterface('IOPadConstraint',constraints) adds a generic
external port interface to an hdlcoder.Board object. You can add at most one external
port interface to your board object.

Use this method if you want the External Port option to be available in the HDL
Workflow Advisor Target Platform Interface dropdown list. If you use this method
to add an external port, in the HDL Workflow Advisor, you must manually specify pin
names in the Bit Range / Address / FPGA Pin field.

Tips

• To get IO constraint names for your board, view the board documentation.

Input Arguments

constraints — IO pad constraints
{} (default) | cell array of strings

IO pad constraints, specified as a cell array of strings.
Example: {'IOSTANDARD = LVCMOS25'}

Example: {'IOSTANDARD = LVCMOS25','SLEW = SLOW'}

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-40

Alternatives

If you know the details of the external interface, and want to make them
available as UI dropdown list options in the HDL Workflow advisor, use the
hdlcoder.Board.addExternalIOInterface method instead. For example, using
hdlcoder.Board.addExteranalIOInterface, you can predefine characteristics of
the interface such as the name, port bit width, signal direction, and valid pin names.

See Also
hdlcoder.Board.addExternalIOInterface | hdlcoder.Board

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

 validateBoard

7-41

validateBoard
Class: hdlcoder.Board
Package: hdlcoder

Check property values in board object

Syntax

validateBoard

Description

validateBoard checks that the hdlcoder.Board object has nondefault values for all
required properties, and that property values have valid data types. This method does
not check the correctness of property values for the target board. If validation fails, the
software displays an error message.

See Also
hdlcoder.Board

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-42

hdlcoder.ReferenceDesign class

Package: hdlcoder

Reference design registration object that describes SoC reference design

Description

refdesign = hdlcoder.ReferenceDesign('SynthesisTool', toolname)

creates a reference design object that you use to register a custom reference design for an
SoC platform.

To specify the characteristics of your reference design, set the properties of the reference
design object.

Construction

refdesign = hdlcoder.ReferenceDesign('SynthesisTool',toolname) creates
a reference design object that you use to register a custom reference design for an SoC
platform.

output_args = function(input_args,Name,Value) <verb phase> with additional
options specified by one or more Name,Value pair arguments. Name can also be a
property name and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

toolname — Synthesis tool name
Xilinx Vivado (default) | Altera Quartus II | Xilinx ISE | Xilinx Vivado

Synthesis tool name, specified as a string.
Example: 'Altera Quartus II'

 hdlcoder.ReferenceDesign class

7-43

Properties

ReferenceDesignName — Reference design name
'' (default) | string

Reference design name, specified as a string. In the HDL Workflow Advisor, this name
appears in the Reference design dropdown list.
Example: 'Default system (Vivado 2014.2)'

BoardName — Board name
'' (default) | string

Board associated with this reference design, specified as a string.
Example: 'Enclustra Mars ZX3 with PM3 base board'

SupportedToolVersion — Supported tool version
{} (default) | cell array of strings

One or more tool versions that work with this reference design, specified as a cell array of
strings.
Example: {'2014.2'}

Example: {'13.7','14.0'}

CustomConstraints — Design constraint file (optional)
{} (default) | cell array of strings

One or more design constraint files, specified as a cell array of strings. This property is
optional.
Example: {'MarsZX3_PM3.xdc'}

Example: {'MyDesign.qsf'}

CustomFiles — Relative path to required file or folder (optional)
{} (default) | cell array of strings

One or more relative paths to files or folders that the reference design requires, specified
as a cell array of strings. This property is optional.

Examples of required files or folders:

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-44

• Existing IP core used in the reference design.

For example, if the IP core, my_ip_core, is in the reference design folder, set
CustomFiles to {'my_ip_core']

• PS7 definition XML file.

For example, to include a PS7 definition XML file, ps7_system_prj.xml, in a folder,
data, set CustomFiles to {fullfile('data', 'ps7_system_prj.xml')}

• Folder containing existing IP cores used in the reference design. HDL Coder only
supports a specific IP core folder name for each synthesis tool:

• For Altera Qsys, IP core files must be in a folder named ip. Set CustomFiles to
{'ip'}.

• For Xilinx Vivado, IP core files, or a zip file containing the IP core files, must be in
a folder named ipcore. Set CustomFiles to {'ipcore'}.

• For Xilinx EDK, IP core files must be in a folder named pcores. Set
CustomFiles to {'pcores'}.

Example: {'my_ip_core'}

Example: {fullfile('data', 'ps7_system_prj.xml')}

Example: {'ip'}

Example: {'ipcore'}

Example: {'pcores'}

Methods

addAXI4SlaveInterface
Add and define AXI4 slave interface

addClockInterface
Add clock and reset interface

addCustomEDKDesign
Specify Xilinx EDK MHS project file

addCustomQsysDesign
Specify Altera Qsys project file

 hdlcoder.ReferenceDesign class

7-45

addCustomVivadoDesign
Specify Xilinx Vivado exported project file

validateReferenceDesign
Check property values in reference design
object

See Also
hdlcoder.Board

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-46

addAXI4SlaveInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add and define AXI4 slave interface

Syntax
addAXI4SlaveInterface('InterfaceConnection',

ref_design_port,'BaseAddress',base_addr)

addAXI4SlaveInterface('InterfaceConnection',

ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',

master_addr_space)

Description
addAXI4SlaveInterface('InterfaceConnection',

ref_design_port,'BaseAddress',base_addr) adds and defines an AXI4 interface
for an Altera reference design, or an AXI4 or AXI4-Lite interface for a Xilinx ISE
reference design.

addAXI4SlaveInterface('InterfaceConnection',

ref_design_port,'BaseAddress',base_addr,'MasterAddressSpace',

master_addr_space) adds and defines an AXI4 or AXI4-Lite interface for Xilinx
Vivado reference designs.

Tips
• Before running this method, you must run the

hdlcoder.ReferenceDesign.addClockInterface method.

Input Arguments

ref_design_port — Reference design port name
'' (default) | string

 addAXI4SlaveInterface

7-47

Reference design port that is connected to the AXI4 or AXI4-Lite interface, specified as a
string.
Example: 'axi_interconnect_0/M00_AXI'

base_addr — Base address
'' (default) | string

Base address for AXI4 or AXI4-Lite slave interface, specified as a string.
Example: '0x40010000'

master_addr_space — Master interface address space (Vivado only)
'' (default) | string

Address space of the master interface connected to this slave interface, specified as a
string. For Vivado reference designs only.
Example: 'processing_system7_0/Data'

See Also
hdlcoder.ReferenceDesign.addClockInterface | hdlcoder.ReferenceDesign

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-48

addClockInterface
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Add clock and reset interface

Syntax

addClockInterface('ClockConnection',clock_port,'ResetConnection',

reset_port)

Description

addClockInterface('ClockConnection',clock_port,'ResetConnection',

reset_port) adds a clock and reset interface to an hdlcoder.ReferenceDesign
object.

Tips

• You must run this method before running the
hdlcoder.ReferenceDesign.addClockInterface method.

Input Arguments

clock_port — Clock port name
'' (default) | string

Reference design port that is connected to the IP core clock port, specified as a string.
Example: 'processing_system7_1/FCLK_CLK0'

reset_port — Reset port name
'' (default) | string

Reference design port that is connected to the IP core reset port, specified as a string.

 addClockInterface

7-49

Example: 'proc_sys_reset/peripheral_aresetn'

See Also
hdlcoder.ReferenceDesign.addAXI4SlaveInterface |
hdlcoder.ReferenceDesign

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-50

addCustomEDKDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Xilinx EDK MHS project file

Syntax

addCustomEDKDesign('CustomEDKMHS',mhs_project_file)

Description

addCustomEDKDesign('CustomEDKMHS',mhs_project_file) specifies the MHS
project file that contains the Xilinx EDK embedded system design. Use this method if
your synthesis tool is Xilinx ISE.

Tips
• If your synthesis tool is Xilinx Vivado, use the addCustomVivadoDesign method.
• If your synthesis tool is Altera Quartus II, use the addCustomQsysDesign method.

Input Arguments

mhs_project_file — MHS project file
string

MHS project file for Xilinx EDK embedded system design, specified as a string.
Example: 'system.mhs'

See Also
hdlcoder.ReferenceDesign.addCustomQsysDesign |
hdlcoder.ReferenceDesign.addCustomVivadoDesign |
hdlcoder.ReferenceDesign

 addCustomEDKDesign

7-51

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-52

addCustomQsysDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Altera Qsys project file

Syntax

addCustomQsysDesign('CustomQsysPrjFile',qsys_project_file)

Description

addCustomQsysDesign('CustomQsysPrjFile',qsys_project_file) specifies the
Qsys project file that contains the Altera Qsys embedded system design. Use this method
if your synthesis tool is Altera Quartus II.

Tips
• If your synthesis tool is Xilinx Vivado, use the addCustomVivadoDesign method.
• If your synthesis tool is Xilinx ISE, use the addCustomEDKDesign method.

Input Arguments

qsys_project_file — Qsys project file
string

Qsys project file for Altera Qsys embedded system design, specified as a string.
Example: 'system_soc.qsys'

See Also
hdlcoder.ReferenceDesign.addCustomEDKDesign |
hdlcoder.ReferenceDesign.addCustomVivadoDesign |
hdlcoder.ReferenceDesign

 addCustomQsysDesign

7-53

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-54

addCustomVivadoDesign

Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Specify Xilinx Vivado exported project file

Syntax

addCustomVivadoDesign('CustomBlockDesignTcl',tcl_project_file)

Description

addCustomVivadoDesign('CustomBlockDesignTcl',tcl_project_file)

specifies the exported Tcl project file that contains the Xilinx Vivado embedded system
design. Use this method if your synthesis tool is Xilinx Vivado.

Tips

• If your synthesis tool is Xilinx ISE, use the addCustomEDKDesign method.
• If your synthesis tool is Altera Quartus II, use the addCustomQsysDesign method.

Input Arguments

tcl_project_file — Tcl project file
string

Tcl file that you exported from your Xilinx Vivado embedded system design project,
specified as a string. The Tcl file name must be the same as the Vivado block design
name.
Example: 'system_top.tcl'

 addCustomVivadoDesign

7-55

See Also
hdlcoder.ReferenceDesign.addCustomQsysDesign |
hdlcoder.ReferenceDesign.addCustomEDKDesign |
hdlcoder.ReferenceDesign

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

7 Shared Class and Function Reference for HDL Code Generation from MATLAB and Simulink

7-56

validateReferenceDesign
Class: hdlcoder.ReferenceDesign
Package: hdlcoder

Check property values in reference design object

Syntax

validateReferenceDesign

Description

validateReferenceDesign checks that the hdlcoder.ReferenceDesign object has
nondefault values for all required properties, and that property values have valid data
types. This method does not check the correctness of property values for the target board.
If validation fails, the software displays an error message.

See Also
hdlcoder.ReferenceDesign

Related Examples
• Define and Register Custom Board and Reference Design for SoC Workflow
• “Register a Custom Board”
• “Register a Custom Reference Design”

More About
• “Board and Reference Design Registration System”

Introduced in R2015a

8

System object Reference

8 System object Reference

8-2

matlab.System class
Package: matlab

Base class for System objects

Description

matlab.System is the base class for System objects. In your class definition file, you
must subclass your object from this base class (or from another class that derives from
this base class). Subclassing allows you to use the implementation and service methods
provided by this base class to build your object. Type this syntax as the first line of
your class definition file to directly inherit from the matlab.System base class, where
ObjectName is the name of your object:

classdef ObjectName < matlab.System

Note: You must set Access = protected for each matlab.System method you use in
your code.

Methods

setupImpl
Initialize System object

stepImpl
System output and state update equations

Attributes

In addition to the attributes available for MATLAB objects, you can apply the following
attributes to any property of a custom System object.

Nontunable After an object is locked (after step or setup has been
called), use Nontunable to prevent a user from changing

 matlab.System class

8-3

that property value. By default, all properties are tunable.
The Nontunable attribute is useful to lock a property that
has side effects when changed. This attribute is also useful
for locking a property value assumed to be constant during
processing. You should always specify properties that affect
the number of input or output ports as Nontunable.

Logical Use Logical to limit the property value to a logical, scalar
value. Any scalar value that can be converted to a logical is
also valid, such as 0 or 1.

PositiveInteger Use PositiveInteger to limit the property value to a
positive integer value.

DiscreteState Use DiscreteState to mark a property so it will display its
state value when you use the getDiscreteState method.

To learn more about attributes, see “Property Attributes” in the MATLAB Object-
Oriented Programming documentation.

Examples

Create a Basic System Object

Create a simple System object, AddOne, which subclasses from matlab.System. You
place this code into a MATLAB file, AddOne.m.

classdef AddOne < matlab.System

% ADDONE Compute an output value that increments the input by one

 methods (Access = protected)

 % stepImpl method is called by the step method.

 function y = stepImpl(~,x)

 y = x + 1;

 end

 end

end

Use this object by creating an instance of AddOne, providing an input, and using the
step method.

hAdder = AddOne;

x = 1;

8 System object Reference

8-4

y = step(hAdder,x)

Assign the Nontunable attribute to the InitialValue property, which you define in
your class definition file.

properties (Nontunable)

 InitialValue

end

See Also
matlab.system.StringSet

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes
• “Method Attributes”
• “Define Basic System Objects”
• “Define Property Attributes”

 setupImpl

8-5

setupImpl
Class: matlab.System
Package: matlab

Initialize System object

Syntax

setupImpl(obj)

setupImpl(obj,input1,input2,...)

Description

setupImpl(obj) sets up a System object and implements one-time tasks that do not
depend on any inputs to its stepImpl method. You typically use setupImpl to set
private properties so they do not need to be calculated each time stepImpl method is
called. To acquire resources for a System object, you must use setupImpl instead of a
constructor.

setupImpl executes the first time the step method is called on an object after that
object has been created. It also executes the next time step is called after an object has
been released.

setupImpl(obj,input1,input2,...) sets up a System object using one or more
of the stepImpl input specifications. The number and order of inputs must match
the number and order of inputs defined in the stepImpl method. You pass the inputs
into setupImpl to use the specifications, such as size and data types in the one-time
calculations.

setupImpl is called by the setup method, which is done automatically as the first
subtask of the step method on an unlocked System object.

Note: You can omit this method from your class definition file if your System object does
not require any setup tasks.

You must set Access = protected for this method.

8 System object Reference

8-6

Do not use setupImpl to initialize or reset states. For states, use the resetImpl
method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Tips

To validate properties or inputs use the validatePropertiesImpl,
validateInputsImpl, or setProperties methods. Do not include validation in
setupImpl.

Do not use the setupImpl method to set up input values.

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the stepImpl method

Examples

Setup a File for Writing

This example shows how to open a file for writing using the setupImpl method in your
class definition file.

methods (Access = protected)

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,'wb');

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 setupImpl

8-7

end

8 System object Reference

8-8

stepImpl
Class: matlab.System
Package: matlab

System output and state update equations

Syntax
[output1,output2,...] = stepImpl(obj,input1,input2,...)

Description
[output1,output2,...] = stepImpl(obj,input1,input2,...) defines the
algorithm to execute when you call the step method on the specified object obj. The
step method calculates the outputs and updates the object’s state values using the
inputs, properties, and state update equations.

stepImpl is called by the step method.

Note: You must set Access = protected for this method.

Tips
The number of input arguments and output arguments must match the values returned
by the getNumInputsImpl and getNumOutputsImpl methods, respectively

Input Arguments

obj

System object handle

input1,input2,...

Inputs to the step method

 stepImpl

8-9

Output Arguments

output

Output returned from the step method.

Examples

Specify System Object Algorithm

Use the stepImpl method to increment two numbers.

methods (Access = protected)

 function [y1,y2] = stepImpl(obj,x1,x2)

 y1 = x1 + 1;

 y2 = x2 + 1;

 end

end

How To
• “Define Basic System Objects”

8 System object Reference

8-10

matlab.system.mixin.Nondirect class

Package: matlab.system.mixin

Nondirect feedthrough mixin class

Description

matlab.system.mixin.Nondirect is a class that uses the output and update
methods to process nondirect feedthrough data through a System object.

For System objects that use direct feedthrough, the object’s input is needed to generate
the output at that time. For these direct feedthrough objects, the step method
calculates the output and updates the state values. For nondirect feedthrough, however,
the object’s output depends only on the internal states at that time. The inputs
are used to update the object states. For these objects, calculating the output with
outputImpl is separated from updating the state values with updateImpl. If you use
the matlab.system.mixin.Nondirect mixin and include the stepImpl method in
your class definition file, an error occurs. In this case, you must include the updateImpl
and outputImpl methods instead.

The following cases describe when System objects in Simulink use direct or nondirect
feedthrough.

• System object supports code generation and does not inherit from the Propagates
mixin — Simulink automatically infers the direct feedthrough settings from the
System object code.

• System object supports code generation and inherits from the Propagates mixin —
Simulink does not automatically infer the direct feedthrough settings. Instead, it uses
the value returned by the isInputDirectFeedthroughImpl method.

• System object does not support code generation — Default
isInputDirectFeedthrough method returns false, indicating that direct
feedthrough is not enabled. To override the default behavior, implement the
isInputDirectFeedthroughImpl method in your class definition file.

Use the Nondirect mixin to allow a System object to be used in a Simulink feedback
loop. A delay object is an example of a nondirect feedthrough object.

 matlab.system.mixin.Nondirect class

8-11

To use this mixin, you must subclass from this class in addition to subclassing from
the matlab.System base class. Type the following syntax as the first line of your class
definition file, where ObjectName is the name of your object:

classdef ObjectName < matlab.system &...

 matlab.system.mixin.Nondirect

Methods

outputImpl
Output calculation from input or internal
state of System object

updateImpl
Update object states based on inputs

See Also
matlab.system

Tutorials
• “Use Update and Output for Nondirect Feedthrough”

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

8 System object Reference

8-12

outputImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Output calculation from input or internal state of System object

Syntax
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN)

Description
[y1,y2,...,yN] = outputImpl(obj,u1,u2,...,uN) implements the output
equations for the System object. The output values are calculated from the states and
property values. Any inputs that you set to nondirect feedthrough are ignored during
output calculation.

outputImpl is called by the output method. It is also called before the updateImpl
method in the step method. For sink objects, calling updateImpl before outputImpl
locks the object. For all other types of objects, calling updateImpl before outputImpl
causes an error.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments
obj

System object handle

u1,u2,...uN

Inputs from the algorithm or step method. The number of inputs must match the
number of inputs returned by the getNumInputs method. Nondirect feedthrough inputs

 outputImpl

8-13

are ignored during normal execution of the System object. However, for code generation,
you must provide these inputs even if they are empty.

Output Arguments

y1,y2,...yN

Outputs calculated from the specified algorithm. The number of outputs must match the
number of outputs returned by the getNumOutputs method.

Examples

Set Up Output that Does Not Depend on Input

Specify in your class definition file that the output does not directly depend on the
current input with the outputImpl method. PreviousInput is a property of the obj.

methods (Access = protected)

 function [y] = outputImpl(obj, ~)

 y = obj.PreviousInput(end);

 end

end

See Also
matlab.system.mixin.Nondirect

How To
• “Use Update and Output for Nondirect Feedthrough”

8 System object Reference

8-14

updateImpl
Class: matlab.system.mixin.Nondirect
Package: matlab.system.mixin

Update object states based on inputs

Syntax

updateImpl(obj,u1,u2,...,uN)

Description

updateImpl(obj,u1,u2,...,uN) implements the state update equations for the
system. You use this method when your algorithm outputs depend only on the object’s
internal state and internal properties. Do not use this method to update the outputs from
the inputs.

updateImpl is called by the update method and after the outputImpl method in the
step method. For sink objects, calling updateImpl before outputImpl locks the object.
For all other types of objects, calling updateImpl before outputImpl causes an error.

Note: You must set Access = protected for this method.

You cannot modify any tunable properties in this method if its System object will be used
in the Simulink MATLAB System block.

Input Arguments

obj

System object handle

u1,u2,...uN

Inputs to the algorithm or step method. The number of inputs must match the number
of inputs returned by the getNumInputs method.

 updateImpl

8-15

Examples

Set Up Output that Does Not Depend on Current Input

Update the object with previous inputs. Use updateImpl in your class definition file.
This example saves the u input and shifts the previous inputs.

methods (Access = protected)

 function updateImpl(obj,u)

 obj.PreviousInput = [u obj.PreviousInput(1:end-1)];

 end

end

See Also
matlab.system.mixin.Nondirect

How To
• “Use Update and Output for Nondirect Feedthrough”

8 System object Reference

8-16

matlab.system.StringSet class
Package: matlab.system

Set of valid string values

Description

matlab.system.StringSet defines a list of valid string values for a property. This
class validates the string in the property and enables tab completion for the property
value. A StringSet allows only predefined or customized strings as values for the
property.

A StringSet uses two linked properties, which you must define in the same class.
One is a public property that contains the current string value. This public property is
displayed to the user. The other property is a hidden property that contains the list of all
possible string values. This hidden property should also have the transient attribute so
its value is not saved to disk when you save the System object.

The following considerations apply when using StringSets:

• The string property that holds the current string can have any name.
• The property that holds the StringSet must use the same name as the string

property with the suffix “Set” appended to it. The string set property is an instance of
the matlab.system.StringSet class.

• Valid strings, defined in the StringSet, must be declared using a cell array. The
cell array cannot be empty nor can it have any empty strings. Valid strings must be
unique and are case-insensitive.

• The string property must be set to a valid StringSet value.

Examples

Set String Property Values

Set the string property, Flavor, and the StringSet property, FlavorSet in your class
definition file.

 matlab.system.StringSet class

8-17

properties

 Flavor = 'Chocolate';

end

properties (Hidden,Transient)

 FlavorSet = ...

 matlab.system.StringSet({'Vanilla','Chocolate'});

end

See Also
matlab.System

How To
• “Object-Oriented Programming”
• Class Attributes
• Property Attributes

